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Abstract

The dynamic pricing problem has been ex-
tensively studied under the stream model:
A stream of customers arrives sequentially,
each with an independently and identically
distributed valuation. However, this formula-
tion is not entirely reflective of the real world.
In many scenarios, high-valuation customers
tend to make purchases earlier and leave the
market, leading to a shift in the valuation
distribution. Thus motivated, we consider a
model where a pool of n non-strategic unit-
demand customers interact repeatedly with
the seller. Each customer monitors the price
intermittently according to an independent
Poisson process and makes a purchase if the
observed price is lower than her private valua-
tion, whereupon she leaves the market perma-
nently. We present a minimax optimal algo-
rithm that efficiently computes a non-adaptive
policy which guarantees a 1/k fraction of the
optimal revenue, given any set of k prices.
Moreover, we present an adaptive learn-then-
earn policy based on a novel debiasing ap-
proach, and prove an O(kn3/4) regret bound.
We further improve the bound to O(k3/*n3/4)
using martingale concentration inequalities.

1 Introduction

Pricing with unknown demand is a fundamental chal-
lenge in revenue management. Consider the sale of
new clothing lines. Each customer visits the (online or
offline) store intermittently depending on their avail-
ability and makes a purchase if the observed price is
lower than her valuation. As each customer typically
needs only one unit, she exits the market once a pur-
chase is made. As the product is newly introduced, the
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seller has little information about customers’ valuations
to inform their pricing strategy upfront.

Most existing work on dynamic pricing employs
what we call a stream model: A stream of
customers arrives sequentially, each with an in-
dependent identically distributed (i.i.d.)  valua-
tion. Demand uncertainty is well understood under
this model; see, e.g., [Kleinberg and Leighton, 2003
Besbes and Zeevi, 2009] and [Babaioff et al., 2015].

However, the stream model is lacking in many real-
world scenarios. In the above clothing example, the de-
mands over time are neither identical nor independent.
They are not identically distributed since a high-value
customer tends to make a purchase early and subse-
quently leaves the market, resulting in a shift in the
distribution of valuations towards the lower end.

It should be noted that demand non-stationarity
has been extensively studied (|Besbes and Zeevi, 2011],
[Besbes and Sauré, 2014] and [Den Boer, 2015]). How-
ever, the non-stationarity in these work is exogenous:
It serves to incorporate external factors such as season-
ality or promotion and does not depend on the seller’s
action. In contrast, the non-stationarity in our example
is endogenously determined by the seller’s actions.

Orthogonal to non-stationarity, the independence as-
sumption is also questionable. In the stream model,
the demand in every time period is independent of
the previous prices (even if the demand function is
non-stationary over time). However, this is not true
in the previous example. To see why the demand rate
depends on previous prices, suppose all customers have
a valuation 0.5 and always monitor the price. Then,
the demand rate is 0 at price 1 if and only if the price
has ever been lower than 0.5.

This problem is also related to Reinforcement Learning
(RL) for Partially Observable Markov Decision Process
(POMDP). In fact, we can encode the state using (i)
the remaining time and (ii) the remaining customers
in each valuation group. Moreover, we only observe
the total number of sales (across all valuation groups)
in any interval of time which only gives partial in-
formation about the current state. However, known



Manuscript under review by AISTATS 2024

results for learning POMDPs are not applicable since
they (i) require special structures that do not hold in
our problem, (ii) usually rely on revisiting the states,
which is infeasible here as the state evolution is unidi-
rectional, and (iii) do not leverage the special structure
of our problem. We provide a detailed discussion in
the literature review; see Section [1.2

In order to address these challenges, we consider a
single-item revenue maximization problem where a
pool of unit-demand, non-strategic customers interact
repeatedly with a single seller. Each customer monitors
the price intermittently according to an independent
Poisson process and makes a purchase if she observes a
price lower than her private valuation, whereupon she
leaves the market permanently. We design an efficient
algorithm that computes a nearly optimal non-adaptive
policy for the unknown demand. Furthermore, we also
propose a learn-then-earn policy with vanishing regret.

1.1 Owur Contribution

We initiate the study of dynamic pricing under a pool-
based model and present the following results.

1. A Novel Model. We introduce a novel pool-based
pricing model: Each customer monitors the price ac-
cording to an independent Poisson process, makes a
purchase when the observed price is below the valua-
tion, and leaves the market permanently. In contrast
to the stream-based model in most existing work, our
model better encapsulates the key features of many
retailing scenarios where the customers have unit de-
mand. We show that this problem is tractable if the
instance is known through the following results.

a) Price Monotonicity. We show that the price
sequence in any optimal non-adaptive policy is non-
increasing; see Proposition [2:3}

b) Optimal Non-adaptive Policy. We present
an efficient algorithm that computes the optimal non-
adaptive policy; see Theorem

2. Optimal Algorithm for Non-adaptive Policy.
We first consider non-adaptive policies, i.e., policies
that predetermine how the price changes, regardless
of observed demands. These policies are particularly
compelling and practical because of their operational
simplicity. We provide a complete settlement of this
setting by showing the following results.

a) A k-Competitive Algorithm. We present an
efficient algorithm that takes a family of instances as
input and returns one non-adaptive policy. We show
that our algorithm is k-competitive for any family of
k-price instances, i.e., the output policy is guaranteed
to procure a (1/k)-fraction of the expected revenue
achievable by any (possibly adaptive) policy with full
knowledge of the true instance; see Theorem [3.1]

b) A (1 + logp)-Competitive Algorithm. The
above guarantee is weak for large k. To mitigate this,
we propose a variant of our algorithm that restricts
its attention to a subset of prices. We show that this
algorithm is (1+log p)-competitive, where p is the ratio
between the highest and lowest prices; see Theorem [3.5]

¢) Optimality. Our algorithm achieves the (maximin)
optimal competitive ratio. Specifically, for each k& > 1,
we construct a family of k-price instances on which no
non-adaptive policy guarantees more than 1/k fraction
of the optimal revenue on all instances in this family;
see Theorem [3.6

3. Adaptive Policy with Sublinear Regret. We
present an adaptive policy with O(k3/*n®/*) regret
against the optimal non-adaptive policy that knows
the size of each valuation group, given any set of k
prices. This is achieved by combining the following
components.

a) Learn-then-earn via Debiasing. We propose a
learn-then-earn policy that estimates the size of each
valuation group. Unlike the stream model (which, in
this case, is equivalent to multi-armed bandits (MAB)),
we face an additional challenge of confounding obser-
vations: At price p, customers with valuations greater
than p may also make a purchase, but we do not observe
the valuations of those who made purchases. We de-
vised an unbiased estimator that circumvents this issue
by accounting for the (estimated) number of remaining
customers from each valuation group. A naive analysis
gives an O(kn®/*) regret bound; see Theorem

b) o(k) Regret via Martingale Concentration.
Unlike in the stream model, in our problem, a naive
analysis only yields linear dependence on k. This is
essential because the confounding effect accumulates
over time. As a key technical step, we construct a
supermartingale and use the Azuma-Hoeffding inequal-
ity to show that the estimation error scales as O(Vk).
This leads to an improved regret bound of O(k3/4n3/4).

1.2 Literature Review

Our work is related to the following lines of research.

Dynamic Pricing In the Stream Model. The
stream model has been extensively studied since
the seminal work by [Gallego and Van Ryzin, 1994]
which focused on characterizing the optimal pol-
icy with a known demand model. The problem
is particularly intriguing when the demand model
is unknown, where the seller must balance learn-
ing and earning [Kleinberg and Leighton, 2003]. Vari-
ous fundamental aspects have also been investigated,
including finite inventory [Besbes and Zeevi, 2009,
[Babaioff et al., 2015], joint inventory-pricing con-
trol [Chen and Simchi-Levi, 2004], customer choice
model [Broder and Rusmevichientong, 2012], person-
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alization [Ban and Keskin, 2021], non-stationarity
[Besbes and Zeevi, 2011], just to name a few. For a
comprehensive overview, the reader can refer to the sur-
vey by [den Boer, 2015]. Although the stream model
is broadly applicable in many contexts, in this work
we aim to understand the pricing problem from an
alternative perspective through the pool-based model.

Pricing with Repeated Interactions. In the stream
model, each customer interacts with the seller only once.
On the other hand, there is substantial literature where
customers engage with the seller multiple times, as in
our model. However, these studies differ from ours
in two critical ways: (i) they are dedicated primarily
to analyzing customers’ strategic behavior, often as-
suming known model dynamics, and (ii) they focus
on characterizing the market equilibrium rather than
finding policies with provable guarantees. For exam-
ple, [Besanko and Winston, 1990] considered a pool-
based model similar to ours but focused on charac-
terizing subgame perfect Nash equilibrium. [Su, 2007]
assumed that the customers are impatient, available
from the beginning, and strategically wait for mark-
downs. [Correa et al., 2016] also considered the pool-
based model, but focused on pre-announced pricing
policies for forward-looking customers. [Wang, 2016]
studied the reference effect in intertemporal pricing
where customer utility depends on past prices.

Markdown Pricing. As we will soon see, any
non-adaptive policy in our problem has a non-
increasing price sequence. In revenue management,
these policies are often referred to as price skim-
ming or markdown policies. Existing work usually
assumes that the demand model is known. The
pool-based model has been extensively studied
in the special case of A = oo; see, e.g., Section
5.5.1 of [Talluri and Van Ryzin, 2006]. Furthermore,
[Smith and Achabal, 1998,  [Caro and Gallien, 2012]
Heching et al., 2002 considered markdown optimiza-
tion under known demand. There is also a recent line of
research that studies markdown policies with unknown
demand models see, e.g., [Chen, 2021} [Jia et al., 2021]
and [Jia et al., 2022]. Unlike our work, these works
view monotonicity as a constraint rather than as a
property of the model’s optimal solution.

Partially Observable Reinforcement Learning.
Our problem can be reformulated as a Markovian De-
cision Process (MDP). In fact, we can characterize the
state by (i) the remaining customers in each valuation
group and (ii) remaining time. However, a key chal-
lenge is that the seller only observes the total demand,
but not the demand from each valuation group.

One may introduce a prior distribution and re-
formulate this problem as a Partially Observable

MDP (POMDP). However, classical hardness results
suggest that learning in POMDPs can be (both
computationally and statistically) intractable even
in simple settings [Krishnamurthy et al., 2016]. Re-
cent results for learning POMDP are not applica-
ble to our problem for multiple reasons. First, they
(i) require special structures, such as block MDPs
[Du et al., 2019 Krishnamurthy et al., 2016] or decod-
able MDPs [Efroni et al., 2022] that do not hold in our
problem. Second, they usually rely on revisiting states,
which is not feasible in our problem, since state evo-
lution is unidirectional - the number of customers can
only decrease, and hence we do not observe the same
state twice. Finally, our results exploit the structure of
our problem which would be ignored by these works.

2 Model and Preliminaries

We now formally describe our model. Consider a finite
continuous time horizon, whose length is normalized to
1. There are n customers with private valuations taken
from a known set {v;};c(y) where v1 > ... > v;. There
are n; customers in the i-th valuation group, all having
valuation v;. Customer j monitors the price according
to an independent Poisson process (N? )sejo,1] With a
homogeneous rate A > 0. An instance T is specified by
a tuple (A, {ni}ie[k]v {Ui}ie[k])‘

Policy. A pricing policy is a stochastic process X =
(Xt)teo,1] taking values on V. A policy is required to
be non-anticipating, i.e., the price depends only on the
“history”. Formally, this means that X is adapted to the
filtration (F;) where 7, = o({N? : j € [n], s € [0,t]}).

Customer Behavior. Each customer j makes a pur-
chase when the observed price is less equal than her
valuation v; for the first time. To formalize this, we
suppress j for now and let (Y;)¢=1,2,. . be ii.d exponen-
tial random variables with mean 1/, representing the
time lags between the monitor events of this customer.
Under this notation, Ty := Zle Y; is the time when
the /-th time that the price is monitored by the cus-
tomer. If the price is ever below the valuation, i.e., if
{¢>1: Xg, <v} #0, then a purchase is made at time
Ty, where L := min{¢ > 1 : X7, < v}. The customer
immediately leaves the market once a purchase is made.
We now can formally define the revenue.

Definition 2.1 (Revenue). Let X = (X;),ej0,1) be a
policy. For each customer j € [n], let 7; € [0,1] be
the time when customer j makes a purchase and set
7; = oo if she never purchases. Then, the (random)
revenue is Ry := ZjE[n] X, -1(r; <1).

A compelling class of policies is the class of non-
adaptive policies, where the prices are determined up-
front, regardless of the purchase events. These policies
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are widely applied in practice due to their simplicity
and effectiveness; see, e.g., [Ma et al., 2021].

Definition 2.2 (Non-adaptive Policy). A policy
(Xs)sef0,1) is non-adaptive if for any s, the random
variable X is a constant.

2.1 Optimization Under Known Demand

When the sizes of each valuation group are known, the
problem is relatively easy to handle, at least in the non-
adaptive setting. We first show that the price sequence
in any optimal non-adaptive policy is non-increasing
over time. A policy with this property is often referred
to as a markdown policy in revenue management.

Proposition 2.3 (Price Monotonicity). Suppose
(Xs)se[0,1) s an optimal non-adaptive policy. Then,
Xs > X; almost surely (a.s.) whenever 0 < s <t < 1.

This structural result follows from a simple swapping
argument. Suppose the price sequence is not non-
increasing, say, the price is pr, in some interval [t — ¢, t]
and increases to py in [t,t + ¢] where ¢ > 0. We
show that the expected revenue does not decrease if
we swap prices py,pr in two intervals. To see this,
note that customers with valuations lower than py are
not affected by this swap, since they can only buy the
product at price pr, in the time interval [t — €, + €.
On the other hand, we can argue that if a customer
has a valuation higher than pg, then after the swap
she is more likely to purchase at price pg.

We will therefore restrict our attention to non-adaptive
markdown policies subsequently. Each policy in this
class can be specified by a sequence (t1,--- ,t;) where
the policy selects the price v; from time ¢; to t;11.
Conveniently, we have a closed-form formula for the ex-
pected revenue for any non-adaptive markdown policy.

Proposition 2.4 (Expected Revenue of Markdown
Policy). For any instance T = (X, {n;}¥_,, {vi}¥_,) and
non-adaptive markdown policy m = (t;);icik), define the
revenue function Rev(mw,T) as

Z Z vje_)‘(tj_ti) (1 _ e_A(tj‘Fl_tj)) .

n;
i€lk] <<k
where ti41 := 1. Then,

E[R,] = Rev(m, ).

Each term in the inner summation corresponds to the
expected revenue from a customer with valuation v;
in the j-th time interval. The term e~ 2% ~%) ig the
probability that a customer of valuation v; remains in
the market until time ¢;, and 1 — e~*%~%) is the prob-
ability that the customer makes a purchase during the
j-th interval, assuming that she is still in the market.

Monotonicity enables us to compute an optimal non-
adaptive policy.

Theorem 2.5 (Optimal Non-adaptive Policy). There
is a polynomial time algorithm that computes an
optimal mon-adaptive policy for any instance T =

(A {nitiey, {vitiey)-

So far, we have shown that our problem is tractable if
the instance is known. In SectionsBland [H we consider
the scenario where the instance is unknown.

3 Competitive Non-adaptive Policy

For new products, the seller usually only has incomplete
knowledge about the true model. An important class
of policies is non-adaptive policies, i.e., policies that
predetermine how price trajectory regardless of realized
purchases. Non-adaptive policies are widely applied in
the real world due to their operational simplicity; see
Section 5 of [Talluri and Van Ryzin, 2006].

In this section, we consider how to compute a non-
adaptive policy given only the monitoring rate and the
price space. We provide a complete settlement of this
setting by presenting an algorithm that computes a
non-adaptive policy that guarantees a best-possible
1/k fraction of the optimal revenue. For any instance
Z, denote by OPT(Z) the optimal revenue achievable
by any non-adaptive policy.

Theorem 3.1 (Competitive Ratio Lower Bound).
There is an algorithm that takes as input the price
space {v; }ic[k), the monitoring rate X, and computes in
polynomial time a non-adaptive policy w such that for
any instance T = (X, {n;}¥_;, {vi}k_,), we have

Rev(m,Z)

OPT(Z) =

1
.

We outline the proof and defer the details to the ap-
pendix. A natural idea is to write Rev(w,Z)/OPT(Z)

as a function f(t1,...,tk;n1,...,nx) and then solve a
bilevel program
(BP1) max min f(t1,...,t5;01,..., k),
t1,...,tg N1,k
such that 0<t, <t; <1,Vi<j, i,j € [k].

However, this approach fails since most results on
bilevel optimization assume certain structures such
as concavity-convexity, but our f is neither convex in
the n;’s nor concave in the t;’s.

3.1 Upper Bounding on the Optimal Revenue

An alternative idea is to find a closed-form formula
for the denominator for any given (n;)’s, and reduce
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the bilevel problem to a single-level problem. However,
this approach does not work either since finding a
closed-form solution for OPT(Z) is a formidable task.
To circumvent this, we introduce the following upper
bound on OPT(Z).

Lemma 3.2 (Upper Bound on OPT(Z)). For any
instance T = (\, {n;}r_,, {vi}r_,), we define UB(Z) :=
Dieqm v (1= e~ ). Then, for any policy 7, we have

E[R,] < UB(Z).

To see this, note that if a customer has valuation v, then
the maximum expected revenue from this customer is
at most v(1 — e™*), which is attained by the policy
that always selects price v. The expression UB(Z) is
simply the sum of this upper bound over all customers.

On the other hand, it should be noted that UB(Z) can
be much greater than OPT(Z). In fact, the UB(Z) is
attained by a personalized policy, i.e., prices for different
customers may differ, whereas OPT(Z) is defined over
non-personalized policies.

3.2 Linearization

With this upper bound, we next focus on the bilevel
optimization problem where OPT(Z) is replaced with
UB(Z). Explicitly, we consider

Rev(m,T)
BP2 i _
(BP2) - max i “0B@)
such that 0<¢; <t; <1,Vi<j, i,j € [k].

The above bilevel problem is still not readily solvable
since Rev(m,Z) and UB(Z) are both non-linear func-
tions. To circumvent this, we consider a linear surrogate
for each of them, motivated by Taylor’s expansion.
Definition 3.3 (Linear Surrogate). For any instance
T = (M A{nitiek)> {vitier)) and non-adaptive policy
m = (t;), we define the linear surrogate of UB(Z) and
Rev(m,T) as

UB'(Z) := ) nivi),

1€ k]
Rev/(m,I) := Z n; Z Avj (tjer —t5).
i€lk]  jelkl:j>i

We show that this linearization only decreases the ob-
jective in (BP2). Thus, a lower bound on the linearized
bilevel program implies a lower bound on (BP2).
Lemma 3.4 (Linearization Reduces the Objective).
For any instance T = (A, {n;}*_,, {v;}r_,) and non-
adaptive policy ™, we have

Rev(m,T) < Rev/(w,T)
UB(Z) = UB(Z)

To see why this is true, observe that the function
h(z) = is decreasing in xz. For any positive
x <y, we have (1 — e ®)/z > (1 — e ¥)/y, which
rearranges to

1—e” "
T

3.3 Reducing to a Linear Program

With Lemma now we further simplify the bilevel
program (BP2) by replacing the objective with the
ratio between the linearized functions. This results in
the following bilevel program:

Zie[k] T Eje[k]:jzi v; (tj+1 —t5)

BP3 i
(BP3)  max  min S~ noo;
such that 0<¢; <t; <1, Vi<y, i,j € [k].

We construct an optimal solution to the (BP3) by
reduction to linear program (LP). Observe that the
inner minimum is always achieved by a binary vector
with exactly one non-zero entry. More precisely, it is
given by n; = n-1(i = i*) where

k
L vt
i* argmin{zwsie [k:]}

Vi

(For simplicity, we assume ¢* is unique; apparently, this
is not essential to the analysis.) Thus, (BP3) can be
reformulated as

max c¢
(ti),c

Zje[k]:jzi vj (tjg1 —t5)
V4
0<t; <t <1,Vie [k].

such that ¢ < , Vi € [K],

We can easily verify that the optimal solution is at-
tained when all the inequalities are binding. In this
case, the optimal solution (¢}) satisfies

tr, —tf= (1 - “i“) (1—t5), Vi<k. (1)

U

This solves to
1

k— 2195#1 %
Finding t; for ¢ < k can be done with backward sub-
stitution using equation .

=1

The resulting performance guarantee is given by
1

k—1 :
]{i — Zi:l Ui-i—l/vi
So far, we have a performance guarantee for fixed
v1,...,V;. Next, we characterize the worst-case perfor-
mance guarantee overall v;s, i.e., the worst-case com-
petitive ratio. By simple calculation, one can verify
that CR(vy,...,vg) is at least 1/k for any vy, ..., vg.

CR(vy,...,v5) =1—1t; =

)
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3.4 Competitive Ratio for Small Aspect Ratio

Note that when k grows, the above result gets weaker
and weaker. This motivates us to employ a core set
for the valuation levels. More precisely, let a > 0
and b be the minimum and maximum of all the v;
respectively. For any e¢ > 0, we can partition the
interval [a, b] into subintervals [a(1 +¢)?~ 1, a(1 +¢)%)
for j =1 to log(b/a)/log(1 + €). Further, we compute
the non-adaptive policy based on the valuation set
{a(1 + )it} for j = 1 to log(b/a)/log(1 + €), and
derive another competitive ratio bound using these.

Theorem 3.5 (Competitive Ratio Lower Bound). For
any instance T = (N, {n;}_1, {v;}r_|) where {n;}r_| is
unknown to the seller, we can compute in polynomial
time a nonadaptive policy m = (t1,- - ,tr41) such that

Rev(m,T) 1
OPT(Z) ~ 1+ log(vi/vx)’

Since the optimal revenue on the whole valuation set,
OPT(Z), is at most (1 + €) of the optimal revenue on
the core set, the competitive ratio we derive on the
core set is at least,

1
(L+e)(k = X5 v /vi)

where k = log(v1/vk)/log(1 + ¢) for the core set, and
viy1/v; = 1/(1 +¢) for i € [k —1]. Plugging the
expression of k and v;11/v;, then the competitive ratio
on the core is

1
1+ elog(vy /vg)/log(1+¢)”

Note €/log(14¢) is increasing in € and €/ log(1+¢) =1
when € goes to 0, therefore, the competitive ratio is at
least,

1
> .
1+ elog(vy/vg)/log(1+¢€) — 1+ log(vy/vg)

3.5 Upper-Bounding the Competitive Ratio

We also show that the above lower bound of 1/k is
the best possible. No algorithm can achieve a fraction
larger than 1/k of the optimal revenue. In Theorem
we demonstrate that for any non-adaptive policy ,
there exists an instance such that the policy can achieve
at most % + € fraction of the optimal revenue.

Theorem 3.6 (Upper Bound on Competitive Ratio).

For any integer k > 0, € > 0 and non-adaptive policy
™, there exists an instance T = 1.}, such that

Rev(m,T)

1
< — .
OPT(IT) ~k ¢

For small A\, the error from linearization is negligible.
For any integer k > 0, € > 0 and non-adaptive policy T,
we only need to construct {v; }*_, such that the compet-
itive ratio, CR(vy,...,vg) = 1/(k5—2f:_11 Vi+1/0;) goes
to 1/k. Consider a geometric sequence with v; = 1,
vi41 = ¢v; for i € [k — 1]. For any € > 0, there exist
a ¢ such that the ratio 1/(k — Zi:ll Vip1/v;) < 1+ €
i.e., the ratio 1/k is tight.

4 Low-Regret Adaptive Policy

Now we consider adaptive policies in the presence of
unknown demand. Specifically, we only assume knowl-
edge of the total number of customers n, the price
levels, and the monitoring rate A\, but not the number
of customers n; in each valuation group. Our policies
aim to simultaneously learn the demand and optimize
pricing decisions given a finite time horizon. As is
standard in the demand learning literature, we will an-
alyze the regret of our policy. We consider the optimal
non-adaptive policy as our benchmark and denote its
expected revenue under instance Z as OPT(Z). Thus
we define the worst-case regret as follows.

Definition 4.1 (Worst-case Regret). For a policy ,
we define its worst-case regret is

Regret(m) := SLIlp {OPT(Z) — Rev(m,I)}

where the supremum is taken over all instances Z where
the total number of customers n, price levels {v;}%_;,
and monitoring rate A are fixed. The demand at each
price level n; may vary arbitrarily subject to the con-
straint ;o ni = n.

As the main result of this section, we present an adap-
tive policy with sublinear regret in both n and k.

Theorem 4.2 (Adaptive Policy with Sublinear Regret).
There exists an adaptive policy m“TF which does not

know the demand at each price level which satisfies
Regret(nMTE) = O(k3/* - n3/4).

Our regret bound is higher than the optimal é(\/%)
regret bound [Auer et al., 2002] for the stream model
(which is equivalent to k-armed bandits). This is be-
cause in the stream model, the effect of exploration
is local in the sense that what the seller does in an
interval of time only affects the customers arriving in
that interval. In contrast, the effect of an action in our
model is global: Regardless of how long an action lasts,
it can potentially affect Q(n) customers. Therefore, it
is reasonable to not expect the same order of regret as
in the stream model.

Our policy is formally described below in Algorithm
The policy operates in two phases. Initially, we ex-
plore each of the price levels vy, vs, ..., vp_1 for fixed
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intervals of length s, s9,...,sx_1. When exploring the
i-th price level, we keep track of the realized demand
D;, which we use to construct estimates {7;};c[s of
the original demand. From there we construct an es-
timated instance Z = (), {7 Yiex]s {vitiepr)), and com-
pute an optimal non-adaptive policy for this instance
only a shortened horizon of length 1 — sgun where
Squm = Zf:_ll s; is the total exploration time.

Algorithm 1: Learn-then-Earn Policy

Data: Partial Instance (n, {v;}X_;, \),
Exploration times (s1,sa,...,8k—-1)
Result: Policy 7#''TE
//Learning phase
fori=1,2,...,k—1do
Use price v; for time s;
‘ Observe sales D;
end

//Construct estimates {A;}F ;
Define the function ¢(z) = 1 — exp(—Az)
fori=1,2,...,k—1do

‘ i 4 % =2 j<i(fj = Dj)
end
N N — Zi<k Mg

//Earning Phase
T < (N AR tiem)s {vitiemw)

Ssum Z?;ll Sq
Find optimal non-adaptive policy %1, ..
on the time interval [0,1 — ssum]ﬂ
fori=1,2,...,k do

| Use price v; during times [£; + Stot, Lit1 + Stot]
end

ot for 7

4.1 Debiasing the Demand

Asis standard in MAB, we aim to construct unbiased es-
timates of the model parameter. In Algorithm|I] we use
price v; for time s; and track (random) demand D; dur-
ing this period. Recall that each customer monitors the
price with Poisson rate A, so D; ~ Binomial(nq, ¢(s1))
where g(x) := 1 — exp(—Az). Thus, D;/q(s1) is an
unbiased estimate of nj.

However, when we explore prices vs,vs, ..., V5_1, the
situation is more complicated. There may still be
active customers (i.e., customers who have not exited
the market) with a valuation v; that purchase during
this time, confounding the observed demand Do, D3, ...
in future stages.

As the pivotal step, we develop a novel unbiased estima-
tor that overcomes this issue. Starting with n; = nq,

!This can be done using the dynamic programming algo-
rithm from Theorem by rescaling time to this interval.

for each 1 = 2,3, ..., k, we recursively define
D; R
7 - n; — Dj), 2
=g~ 2 )

The first part is similar to the naive estimator we
used for 71, while the second part aims to remove the
confounding affect of customers at higher valuations.
We show that this estimator is unbiased.

Lemma 4.3 (Unbiasedness). Let s1, So, ..., Sk—1 be the
lengths of each exploration period and D1, Ds, ..., Dg_1
be the realized demands. For i = 1,...,k, we have

As a quick sketch, we show this by induction on 7 < k.
The base case is obvious. For the inductive case 1 <
i < k, we observe that conditioned on D; for j < 4,
we have D; ~ Bin(3_,;nj — > ;; Dj. q(s;)). Using
this we can show Eff;] = n; + >, Elf; — ny], which
equals n; under the inductive hypothesis.

4.2 The Case of Two Price Levels

We demonstrate the main ideas by showing a regret
bound of O(n?’/ 4) in the two-price case. We specify an
exploration time s € [0, 1], then set the price X; = vy
for all t < s. Let D be the demand (number of sales)
observed in this period. As discussed in Section [{.1] we
use i1 = D/q(s) and iy = n—14 as unbiased estimates
of n; and ns. Using these, we construct the estimated
instance Z = (X, {1, fa}, {v1,v2}) and compute a non-
adaptive policy 7 achieving revenue OPT(Z) for the
remaining time horizon 1 — s and follow it.

We decompose regret into two quantities that we bound
separately. In addition to 7 as defined above, define
T' = (\,{n1 — D,na},{v1,v2}) as the instance which
remains after observing the demand D. We decompose
the regret as follows.

Lemma 4.4 (Regret Dgcomposition). Define n1 =
|E[Rev(7,Z")] — E[OPT(Z)]| and ny = |[E[OPT(Z)] —
OPT(Z)|. Then,

Regret(7TE) <y 4 1.

The proof follows straightforwardly by noting that
E[Rev(7,Z')] is a lower bound on the revenue of our
policy since it only accounts for the revenue in the
earning phase.

We will show that for suitable s, both terms above
are O(n®/*). To this end, we first show that 7; will
grow linearly in s. For this we use two observations.
First, observe that our estimates are unbiased and the
revenue is linear in the size of each valuation group.
Second, we observe that the impact of the exploration
phase (which has length s) is linear in s.
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Lemma 4.5 (Analysis of 7). We have n; = O(Anvys).

To bound 72, we use concentration inequalities to show
that our estimates are close to the target values with
high probability.

Lemma 4.6 (Analysis of 12). For our policy T2, we

have n2 = O(v14/nlog(n)/As) + o(1).

At a high level, we apply Hoeffding’s inequality to
D ~ Binomial(ni,¢(s)), and combine this with the
approximation ¢(s) = 1 — exp(—As) & As for small As.

The following lemma states that if two functions are
point-wise close, then their maximums are also close.
This essentially follows from the triangle inequality.

Lemma 4.7. Let f,g be real-valued functions defined
on any set X. If for all x € X, we have |f(z) —g(x)| <
€, then | max, f(xr) — max, g(z)| < 3e.

Lemma [4.6] then follows by choosing the functions f =
Rev(+,Z) and g = Rev(-,Z), and choose ¢ to be the
bound implied by Hoeffding’s inequality.

Now we complete the analysis for the two-price case.
From Lemma Lemma [£.5] and Lemma [£.6] we have

\/nl
Regret(7“T%) < O <)\nv18 + vlri\sog(n)> +o(1).

The O(n/*) bound follows by taking s = ©(n~1/4/\).

4.3 Extending to k£ Price Levels

We briefly sketch how we extend the analysis from two
price levels to k price levels.

Our current analysis for the two-price setting only leads
to a bound that depends linearly on k. To achieve a
sublinear dependence on k, we need to be more care-
ful in our analysis of the total error in our estimates
n;. Due to the dependencies that exist between our
estimates 7n;, we cannot directly apply concentration
inequalities to control the total error. Instead, we em-
ploy a more careful analysis, showing that the sequence
Zi = ) j<i(fj —nj) — a; is a supermartingale for an
appropriate choice of a; > 0. Then, we apply the
Azuma-Hoeffding inequality to obtain a bound that is
sublinear in k for the total error. Using this in the rest
of our analysis leads to the O(k*/*n3/%) bound on the
regret. We defer the details to the appendix.

5 Future Work

This work opens up a wealth of new directions and
open problems.

1. Lower bounds for the adaptive setting: Known tech-
niques for deriving regret lower bounds for MAB turn

out to be ineffective for our problem, and we have to
develop new proof strategies.

2. Unknown A: In reality, the monitoring rate A may
be unknown and must also be learned online. It is
not clear how to generalize our LTE policy to handle
unknown .

3. Inventory constraint: The problem becomes sub-
stantially harder if the inventory is finite, which caps
our learning process.

4. New arrivals: In reality, there may be new arrivals
apart from the initial group of customers, making the
problem significantly harder. For example, in this case
the monotonicity result no longer holds.
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1. For all models and algorithms presented, check if
you include:
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ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(¢) Clear explanations of any assumptions. [Yes]
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results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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