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In this work we study semi-personalized pricing strategies where a seller uses features about their cus-

tomers to segment the market, and customers are offered segment-specific prices. In general, finding jointly

optimal market segmentation and pricing policies is computationally intractable, with practitioners often

resorting to heuristic segment-then-price strategies. In response, we study how to optimize and analyze

feature-based market segmentation and pricing strategies under the assumption that the seller has a trained

(noisy) regression model mapping features to valuations. First, we establish novel hardness and approxi-

mation results in the case when model noise is independent. Second, in the common case when the noise

in the model is log-concave, we show the joint segmentation and pricing problem can be efficiently solved,

and characterize a number of attractive structural properties of the optimal feature-based market segmen-

tation and pricing. Finally, we conduct a case study using home mortgage data, and show that compared to

heuristic approaches, our optimal feature-based market segmentation and pricing policies can achieve nearly

all of the available revenue with only a few segments. Along the way we also prove a number of structural

properties about pricing from regression models that may be of independent interest.
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1. Introduction

Third-degree price discrimination concerns the now ubiquitous practice of selling a good

at different prices for different consumers (Varian 1989). For example, in the sale of pro-

prietary software licenses, prices may differ based on whether the customer is a student,

professional, or corporate user (see Fig. 1 for an example and Lehmann and Buxmann

(2009) for an extended discussion). In insurance markets, firms gather extremely rich and

nuanced feature information about their customers, ostensibly to estimate risk, but which is

also leveraged to price discrimination on the basis of demographic and/or geographic infor-

mation (Buzzacchi and Valletti 2005, Thomas 2012). In commercial markets facing walk-in

customers, firms are comparatively limited in their information about their customers but

can still profitably leverage feature information to price discriminate, for instance in movie

theater ticket sales the customer’s age (child, adult, senior) and the time of screening

(weekend, matinee) can be used to issue semi-personalized prices via discounts (Dubé et al.

2017).

Figure 1 Example of feature-based market segmentation and pricing.

Note. An example of feature-based market segmentation and pricing for Adobe Creative Cloud products (see https:

//www.adobe.com/creativecloud/plans.html). Here customers are segmented based on their attributes (i.e. student

versus professional) and prices vary based on the segment customers are in, with the student rate being 60% of the

professional rate (note discounts are enforced by requiring a valid .edu email). Further, note the number of segments,

k, is only four. It will be informative to think of k as ≈ 4 in this work.

Each of these markets vary in both the quality and descriptive power of the information

they have about their customers, as well as in the operational difficulty of setting and

https://www.adobe.com/creativecloud/plans.html
https://www.adobe.com/creativecloud/plans.html
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changing their prices, and thus implementing price discrimination. When the information

about customers in the market is of low quality or is largely censored, fully personalized

price discrimination where each customer is charged a personalized price may be futile,

however as mentioned above, that does not preclude the use of some modest price discrim-

ination via market segmentation. In fact, even when information is richly textured and

pricing is largely unconstrained by legal and/or operational considerations, a small static

set of prices based on customer features is still often preferred to fully personalized pricing.

A small set of market segments and prices is conceptually and operationally simple to

implement, and a surprisingly small number of options is often sufficient to achieve strong

revenue (Courty and Pagliero 2012). In this paper, we propose a general framework for

studying semi-personalized pricing strategies which can capture these variations in predic-

tive power and operational flexibility, which we term feature-based market segmentation

and pricing (FBMSP).

Finding and optimizing generic market segmentation and pricing policies is a well-studied

problem in industry with academic roots in operations research/management, marketing,

economics, and computer science. However, archetypal formulations of the segmentation

and pricing problem are well known to be intractably hard (Kleinberg et al. 1998, 2004). To

deal with this hardness, much of the literature has taken a heuristic approach to the prob-

lem (Claycamp and Massy 1968, Assael and Roscoe Jr 1976, Chen 2001, Liu et al. 2010,

Li and Qiu 2014), separating the segmentation and pricing components. Segmentation-

then-price procedures use tools from unsupervised learning to first identify consumer seg-

ments/clusters with similar features, and then identify revenue optimal prices for those

chosen market segments. Using our framework, we advance the study of segmentation

and pricing by finding jointly optimal segmentation and pricing’s under some realistic

assumptions about how firms leverage feature information to predict customers’ valua-

tions. Specifically, in practice a firm’s valuation model i.e. the model that maps features

to valuation or a proxy for willingness-to-pay, is built using regression. Regression models

come with their own theory and standard set of assumptions that we profitably utilize to

study market segmentation and pricing as well. We show that by leveraging the assump-

tions of independence and log-concavity of residuals in the regression model, the resulting

revenue-maximizing feature-based market segmentation and pricing (FBMSP) enjoys a

simple, intuitive structure, and can be computed efficiently. Further, our structural results
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allow us to analyze optimal FBMSP and derive new managerial insights about such poli-

cies, including guidance for choosing the number of segments, and conditions for when a

segmentation and pricing is near-optimal.

1.1. Our Contributions

To summarize our contributions:

1. We first study the algorithmic problem of finding the optimal FBMSP. In general, the

problem is intractably hard, so we focus our attention on the case when valuations

are predicted according to a regression model with independent residuals. We show

that with no additional assumptions, while we can prove some promising structural

properties (c.f. Lemma 1) and provide a (1− 1/e) approximation algorithm for the

optimal segmentation and pricing (c.f. Remark 1), unfortunately finding the optimal

FBMSP is still NP-Hard to compute (c.f. Theorem 1). However, when we further

assume the residuals are log-concave, as is often the case, we are able to evade our

hardness result. Specifically, when residuals are independent and log-concave, we prove

the optimal policy has a simple interval structure which allows us to compute in it

quadratic time via dynamic programming (c.f. Theorem 2).

2. We next turn our attention to analyzing the performance of optimal feature-based

market segmentation and pricing. Specifically, we consider the practical operational

question of how to choose the number of segments k so as to guarantee minimal loss

against a fully personalized pricing benchmark. We show three results that can help

guide practitioners in choosing k. First, we show that an upper bound on the loss

against personalized pricing can be achieved by simply examining the loss in the model,

ignoring the noise term (c.f. Theorem 3). Second, we tightly upper bound the optimal

rate at which FBMSP tends to personalized pricing as a function of the number of

segments k and some valuation parameters (c.f. Theorem 4). Finally, we show that

the revenue of FBMSP is concave in k (c.f. Theorem 5). Taken together, these three

results allow a practitioner to use their regression model (without reference to the

complicating error!) to find k via a simple elbow method, and feel confident that the

results of such a heuristic are provably close to optimal.

3. Finally in Section 5, we demonstrate our method on real housing loan data collected

in Pennsylvania in 2020, and compare its performance against standard segment-

then-price methodologies. We find our approach significantly outperforms heuristic
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methods, especially when the number of segments is small and the variation in the

valuations comes primarily from variation in the regression model µ(·), as opposed

to variation from the prediction error ε. We also note that the segmentations found

by our approach are qualitatively different than those in segment-then-price, with

our approach quickly isolating key differences between groups, whereas heuristic

approaches can get bogged down in pointless price discrimination between groups until

it discovers the important differences for the revenue.

1.2. Literature Review

Our work is influenced by, and contributes to, several streams of literature across operations

management, marketing, and computer science. We now overview some of these streams

and connect them to our work.

Theory of Price Discrimination There is extensive literature on the theory of pricing

discrimination beginning in economics, and spanning operations management, marketing,

and computer science. Much of the classic literature in this area (Schmalensee (1981),

Narasimhan (1984), Katz (1984), Varian (1985), Shih et al. (1988), Bergemann et al. (2015),

Cowan (2016), Xu and Dukes (2016)) focuses on the impact of price discrimination on

social welfare, or the effects of price discrimination on the resultant equilibrium prices.

In this paper, we investigate market segmentation and pricing from the perspective of a

revenue-maximizing monopolist, focusing on computational/practical implementations of

such policies.

Specifically, in the language of Varian (1985) we study third-degree price discrimination

which concerns when a company charges a different price to different consumer groups. In

practice, third-degree price discrimination is the most common form of price discrimination,

with companies leveraging additional information about consumer features to offer different

prices to different implicit/explicit segments in a variety of ways (Su (2007), Jerath et al.

(2010), Besbes and Lobel (2015), Chen et al. (2005), Cohen et al. (2017), Elmachtoub

and Hamilton (2021)). Several papers have analyzed the value of such price discrimination

tactics compared to uniform pricing (Huang et al. (2019), Elmachtoub et al. (2021)). In

contrast, we investigate the value of the optimal feature-based market segmentation and

pricing in this paper, and compare this type of semi-personalized pricing against a fully

personalized benchmark.
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Regression Based Price Discrimination In recent years, data-driven pricing strategies

have become increasingly common (Chen et al. (2015), Ferreira et al. (2016), Shukla et al.

(2019), Aouad et al. (2019), Elmachtoub et al. (2020), Niu et al. (2020), Biggs et al. (2021),

Elmachtoub and Grigas (2022)). In these works, customers are offered a personalized price

based on features that are predictive of their valuation of the product, especially by tree-

based prescriptive approaches (Athey and Imbens (2016), Kallus (2017), Bertsimas et al.

(2019), Biggs et al. (2021)). Unlike most data-driven pricing literature, in our work, we

ignore how the regression model is found and instead take the prediction of customer’s

valuation as input, and analyze how it may be profitable leveraged to compute and analyze

optimal FBMSP.

Algorithms for Market Segmentation and Pricing Our paper contributes to a line of

literature studying market segmentation and pricing from an algorithmic/computational

complexity perspective. Indeed many models of joint market segmentation and pricing are

known to be intractably hard to compute going back at least to the pioneering work of

Kleinberg et al. (1998, 2004), restricting their applicability in practice. Often in marketing,

to evade these hardness results the segmentation and pricing decisions are made sequen-

tially instead of being evaluated together (Dolgui and Proth (2010)), and at first blush it

seems that Theorem 1 implies our model, for all the structure gained through indepen-

dence, is ultimately no better. Fortunately, we will see for almost all regression models

in practice our model makes jointly optimal segmentation and pricing tractable and well

structured.

If the regression error is log-concave, as we assume in Section 3.2, computing the optimal

feature-based segmentation is structurally similar to the 1D Clustering problem for which

dynamic programming approaches have been employed (see Gronlund et al. (2017) for a

modern overview), and can be solved in polynomial time. Other algorithmic approaches

for feature-based pricing can be seen in Cohen et al. (2016), Qiang and Bayati (2016),

Javanmard and Nazerzadeh (2016), albeit in different models.

1.3. Paper Outline

The remainder of this paper is organized as follows. In Section 2 we introduce our model

for FBMSP and provide some preliminary structural results. In Section 3 we study the

problem of computing the revenue-optimal FMBSP. In Section 4 we analyze the structure
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of revenue-optimal FBMSP and provide some theory to guide practitioners in choosing the

number of segments, k. In Section 5 we demonstrate our approach on a well known Home

Mortgage Disclosure Act dataset. Finally, in Section 6 we provide concluding remarks and

highlight future directions. All examples and proofs referenced in the main body can be

found in Sections A and B in the Appendix.

2. Model and Preliminaries

We consider a revenue-maximizing seller offering a good in unlimited supply. For simplicity

of presentation, we will assume the good is produced costlessly and so revenue and profit

are equivalent (we note the model presented in this paper and all results easily extend

to the case when each good has a per unit cost c). We further assume each customer

in the market is described by some feature vector x of their observable characteristics,

and has some valuation for the good which depends on their feature vector, V |x. The

market characteristics as a whole can be described as a distribution over the feature vectors

X∼ FX, which is supported on some feature space X := supp(X). These features vectors

can consist of any information about the customers, including demographic information

like gender, household status, income etc.

In line with modern practice, we model the seller as having trained some regression

model µ : X → R+ to predict a customers valuation for a good from their feature vector.

We assume the regression model has residual error ε but is correct in expectation, so that

the predicted valuation for a customer with features x is µ(x) := E[V |x], and the valuation

model is V = µ(X) + ε. We will use F to be the distribution of the valuations V , FX to

be the distribution of the feature vectors, Fε to be the distribution of the error term ε,

and fX, fε, and f to be the densities, respectively. We will use F to denote the survival

function, i.e., F (x) := 1−F (x).

For a seller with a valuation model µ(·), we will study the revenue achievable by selling

strategies where the feature space of the market, X , is partitioned into k segments {Xi}ki=1,

∩Xi = ∅, ∪Xi =X , such that on each segment the seller offers a distinct price p(Xi). Now

we are ready to define feature-based market segmentation and pricing strategies, which is

the main object of this study.

Feature-Based Market Segmentation and Pricing: In feature-based market seg-

mentation and pricing the seller partitions the feature space into k segments {Xi}ki=1, and
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Figure 2 An example of FBMSP.

Note. Depicted is an example of feature-based market segmentation. For each customer some numeric prediction of

their valuation is given. The feature space X consists of all combinations of the color and gender for the customer,

and the depicted feature-based market segmentation leverages color (not necessarily optimally) to sort them into

three segments Xi, i∈ [3], each with a distinct segment level price, p(Xi).

on each segment offers a single price p(Xi) (see Fig. 2 for example). The expected profit of

such a segmentation is,

RkXP

(
{Xi}ki=1,{p(Xi)}ki=1

)
:=

k∑
i=1

p(Xi)
∫
x∈Xi

Pr (µ (x) + ε≥ p(Xi))fX(x)dx, (1)

where the sum is over the k market segments, and the revenue of each segment is the

segment price p(Xi) times the probability of sale at the price, integrated over the feature

vectors in the segment. Given a segmentation it will often be convenient to think of the

prices as the revenue optimal ones for that segment. To that end, we denote the optimal

price on segment Xi by pε(Xi) i.e.,

pε(Xi) := arg max
p

p

∫
x∈Xi

Pr (µ (x) + ε≥ p)fX(x)dx.

We will use RkXP := maxX1,...,Xk
∑k

i=1RkXP ({Xi}ki=1,{pε(Xi)}ki=1) denote the optimal profit

for a feature-based (k) market segmentation and pricing strategy.
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Note that our framework for feature-based market segmentation and pricing is very flex-

ible, and captures many well studied models as special cases. For instance when k = 1,

FBMSP is just the revenue generated by a single static price for the good (sometimes

referred to as the revenue of the monopoly price, or posted price, or single price). Similarly

when the number of segments is very large, i.e. k→∞, FBMSP becomes the revenue of

feature-based personalized pricing, where each customer receives an appropriately person-

alized price. The revenue of feature-based personalized pricing is a useful upper bound to

compare with the revenue of optimal FBMSP for some fixed number of segments k. In

Section 4 we consider the question of how large does k need to be, in general, to approach

the revenue of personalized pricing, with the hope that a reasonably small k should suffice

(see Elmachtoub et al. (2021) for a detailed discussion of when feature-based personalized

pricing is provably close or far from the revenue of a single price).

Moreover, when the error distribution ε is 0 almost surely (a.s.), our model represents

the achievable revenue in the world of the prediction model µ without regard to the models

potential error. We term this optimistic case model market segmentation, and in Section 4

will show that reasoning about the profit in a world of perfect prediction can provide a

useful upper bound on the loss of FBMSP with error.

2.1. Key Assumptions and Preliminaries.

As mentioned in the introduction, the optimal feature-based market segmentation and

pricing is generally hard to compute. To ensure tractability, in our work we will carry

through the common regression assumption that the model error, ε, is independent across

features i.e. X |= ε. We consider this assumption to be quite mild, as it underlies many

predictive models used in practice, including for example, the well known logit model where

a customer’s valuation is a linear combination of that customer’s features, the offered

price, and an idiosyncratic error following a logistic distribution which is independent of

X. Similar remarks hold for other regression-based models with independent errors. The

upshot will be that this necessary assumption for regression is also quite harmonious with

pricing, and gives considerable structure and control for analyzing pricing models.

In the next section we will delve into the structure of optimal FBMSP, but first we

will illustrate how the independence assumption smooths our problem by considering some
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related objectives. To this end, consider three auxiliary functions that will later be helpful

in analysis of FBMSP, and also are of independent interest.

Price: pε(x) := inf{arg max
p

pF ε(p−x)}, Margin: θε(x) := pε(x)−x,

Revenue: Rε(x) := max
p
pPr(x+ ε≥ p) = pε(x)F ε(θε(x)).

The price, margin, and revenue functions all serve to model a seller pricing a good for

a customer, after having predicted their valuation as x ∈ R, up to some stochastic error

ε. pε(x) is the optimal price to offer a customer with predicted valuation x, Rε(x) is the

revenue of the optimal monopoly price when the valuation distribution is x+ε, and θε(x) is

the difference or margin between the predicted valuation x and the offered price pε(x). Note,

pε(x) is uniquely defined to be the minimum price that achieves the maximum revenue,

such a minimum is necessary since for some distributions ε, there may be many prices that

maximize the revenue (see Example EC.1, for an extensive discussion on when the optimal

price is unique, or equivalently when the revenue function is strictly unimodal, see Ziya

et al. (2004)).

In the following lemma we summarize some of the structure we observe in these functions.

Lemma 1 (General Properties of pε(·), θε(·),Rε(·)). For any distribution ε such that

E[ε] = 0, the following properties hold:

(a) θε(x) is a decreasing function.

(b) For any 0<x1 <x2, we have

F ε (θε(x1)) (x2−x1)≤Rε(x2)−Rε(x1)≤ F ε (θε(x2)) (x2−x1) .

Moreover, for all x such that pε(x) is continuous (i.e. pε(x
−) = pε(x

+)), the derivative

of Rε(x) exists and d
dx
Rε(x) = F ε(θε(x)).

(c) Rε(x) is increasing, continuous, and convex.

Lemma 1 implies that independence between the error and valuation model induces

prices that result in a monotone increasing sales probabilities via θε(x), and a convex

revenue function Rε(x) with interpretable, bounded derivatives. All three parts of the

lemma are proved by examining the induced optimal prices, pε(x), and noting that pε(x)

cannot increase very quickly (i.e. super linearly). Unfortunately, our control is not perfect

as pε(x) can otherwise be quite poorly behaved; there can be many optimal prices for a
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given valuation, and worse pε(x) can be discontinuous at arbitrarily many points x (see

Example EC.1 for an example). The jump discontinuities in pε(x) translate directly to

non-differentiable points in the revenue function. As we will see in Section 3, the structure

provided by independence is not quite enough to enable the efficient computation of the

optimal FBMSP, however it will be critical in our analysis of such policies.

3. Computing Optimal Feature-Based Market Segmentation and
Pricing

In this section we study the problem of finding the jointly optimal FBMSP, culminating

with conditions and an algorithm under which the optimal policy can be computed effi-

ciently. We will first show that when valuations are drawn from a regression model with

general independent residuals, the optimal policy is NP-Hard to compute. We then iden-

tify that the hardness stems from some pathological segmentation properties, and define

a natural property to characterize nice segmentations which we call interval. Our main

positive result of this section is to show that when the residuals are log-concave the optimal

segmentations are interval, and further, the optimal interval segmentations can be found

in cubic time via dynamic programming. Thus, for realistic valuation models under stan-

dard regression assumptions, the jointly optimal segmentation and pricing can be directly

computed instead of having to resort to heuristic segment-then-price approaches.

3.1. Hardness of FBMSP

To understand some of the difficulty of FBMSP, in this subsection we will review some

standard hardness results and show that even under the assumption of independent resid-

uals, the problem remains intractable. Our proof of this hardness result will yield guiding

intuition for how an additional condition of log-concavity on the residuals should be com-

putationally useful.

In general, the hardness of market segmentation and pricing problems typically follows

from a reduction to hitting set (Kleinberg et al. 1998, 2004). The correspondence between

the two problems often works as follows: imagine you have n customers each with valuations

described by an independent distribution Fi such that pF i(p) is maximized by some discrete

set of optimal prices Si. Then the best case market segmentation and pricing problem is

simply to find a partition of customers into k segments such that on each segment, the

intersection of each customers optimal price set is non-empty. This implies then that there
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is an obvious optimal price for the each segment that clearly maximizes the revenue by

construction, and so the hardness is merely to find the partition with such a property. This

is exactly the difficulty in k-hitting set, and so follows the reduction.

Note, in the above that the assumption of unique valuation distributions for each cus-

tomer, Fi, is crucially important in setting up the correspondence with hitting set. In our

model, where valuations are described by a common regression function with independent

noise, it is no longer clear if such a construction is possible. That is, now for customer i

with features xi, their valuation distribution is V |xi = µ(xi) + ε. As we show in the fol-

lowing theorem, the problem remains NP-hard in this case, although the proof requires an

significantly more intricate construction of the common error distribution ε.

Theorem 1 (Hardness of FBMSP). Suppose that V = µ(X)+ε, X |= ε, and E[ε] = 0.

Then finding the optimal FBMSP policy is NP-hard.

Sketch of Proof of Theorem 1 The proof of Theorem 1 follows by reduction to hitting set,

as in the general case. For every instance of the hitting set problem, we show that there

exist estimations of customers’ valuation, and prediction error’s, such that deciding if there

are k (or less) elements that hit all the subsets is equivalent to deciding whether there

are k segments and prices such that the total revenue is n(n+1)
2

, where n is the number of

subsets in the hitting set problem (equivalently, the number of customers in the market).

Our construction follows by designing a error distribution ε which results in a number

claw like functions for each customer, that are then spread by translation to encode a set

of optimal prices for each valuation level µ(xi). Fig. 3 gives an example of our hardness

reduction for a small instance. �

Theorem 1 implies it is impossible to solve general FBMSP efficiently if P 6= NP. This

leaves us two options, either to look for approximate solutions for general FBMSP, or to

enrich the structure of our model by imposing additional assumptions. We briefly explore

the former in Remark 1, but will focus mainly on the later.

Remark 1. While an optimal policy for general error distribution cannot be found in

polynomial time, we note that a constant factor approximation to the optimal feature-based

market segmentation and pricing is obtainable. Specifically, a (1−1/e) factor approximate

policy can be found in polynomial time since the objective function is positive valued,

monotone, and submodular. We formalize this observation in Section D in the appendix.

�
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Figure 3 Example of hitting set and FBMSP.

Note. In the left panel is a graph representation of a small instance of a hitting set problem. To illustrate the

translation of a hitting set problem to a FBMSP problem, assume we have 3 customers with predicted valuation

x1 = 3, x2 = 43
8

, x3 = 161
24

. Further, let the estimation error ε be supported on
{
− 161

24
,− 77

5
,− 19

8
,− 15

8
,0, 1

2

}
with

probability masses
{

1
7
, 4
21
, 2
21
, 5
21
, 1
21
, 2
7

}
. Finally, let p1 = 3 and p2 = 3.5. In the right panel we plot the revenue curves

for each valuation xi. We can see that the revenue for each customer is maximized only at either p1 or p2 (red

dashed lines) which represent the connections between price nodes and valuation nodes in left panel, i.e., revenue

from customer with valuation x3 is maximized at price p2 = 3.5, revenues from customers with valuations x2 and x1

are both maximized at p1 = 3 and p2 = 3.5.

3.2. Feature-Based Market Segmentation and Pricing with Log-Concave Residuals

In the previous subsection we studied FBMSP in a setting where the underlying error

in the valuation model was arbitrary, and in the proof of Theorem 1 we leveraged this

freedom to construct a general error distribution such that it induced jagged, delicately

overlapped revenue functions that made the problem intractable. In this section we will

consider assumptions that evade such pathological constructions. To that end, recall in

Lemma 1 were able to characterize many things about the revenue function Rε(x), but less

about the structure of the pricing function which we noted could vary (drop) dramatically

between similar valuations. It is precisely these discontinuities in pε(x) that enable our

construction in Fig. 3, and give it it’s discrete quality that makes it difficult to optimize. A

natural question then to ask is, for suitably smooth error distributions/revenue functions,

is it still hard to compute the optimal FBMSP?

We will make one additional assumption about the error distribution that enforces such

a notion of smoothness. Namely, we will assume the distribution is log-concave, a canon-
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ical assumption in the pricing and revenue management literature. Note, many standard

distributions are log-concave including normal, exponential, uniform distributions, etc.

Definition 1 (Log-Concave Error). A random variable ε with density fε is log-

concave if log(fε(x)) is a concave function.

To understand how log-concavity in the error function translates into tractability for

FBMSP, we will first show that it implies a continuous, increasing price function pε(x),

precluding behaviour like in Fig. 3. Leveraging this continuity in the prices, we can then

show the optimal segmentation must be well structured in the sense that the segmentation

groups together customers with similar predicted valuations for the good. Such segmen-

tations are natural, easy to interpret as low/medium/high/etc. type segments, and as we

will show, easy to optimize and analyze. We will call segmentations that group together

customers with similar valuations interval, and define them as follows.

Definition 2 (Interval Segmentation). We will call a segmentation, {Xi}k1, an

interval segmentation if there exists real numbers 0< s0 ≤ s1 ≤ . . .≤ sk = supxµ (x) such

that each segment Xi can be written as Xi = {x|µ(x)∈ [si−1, si)}.
When describing interval segmentations, we will often denote the segmentation by just

the end points of the intervals in the valuation space that define them, {si}k0. We emphasize

that not all optimal market segmentations are interval, certainly the ones induced by the

construction in Theorem 1 are not, but also even simple error distributions can have more

complicated structure as we demonstrate in Example EC.2. Thankfully, it turns out the

smooth notion of error captured by log-concavity, and the intuitive structure of interval

segmentations are harmonious notions. In the following lemma we show that log-concavity

in the error removes any jump discontinuities from the price function, which in turn allows

us to prove that the revenue optimal FBMSP is interval.

Lemma 2 (Properties of Log-Concave Error). Suppose that V = µ(X) + ε where ε

is log-concave, X |= ε, and E[ε] = 0. Then,

(a) pε(x) is an increasing and continuous function.

(b) The optimal segmentation is interval.

(c) The price on each segment pε(Xi) equals pε(µ (x)) for some x such that minx∈Xi µ(x)≤
µ(x)≤maxx∈Xi µ(x) .

Lemma 2 shows that, by assuming the error in the regression model is log-concave, all

the previously mentioned pathologies vanish. First, we show that pε(x) becomes a strictly
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increasing function which, combined with Lemma 1, implies that the revenue function

Rε(x) is differentiable everywhere, and it’s derivative is simply the sale probability. We

then show in (b) that the upshot of this additional smoothness for FBMSP is that the

segmentation policy becomes interval. Moreover, the optimal price to offer on each segment

is contained in the segment, as the optimal price for some feature vector. This locality of

the price and segment then enables fast computation of the optimal policy via dynamic

programming, as we describe next in the main theorem for this section.

Theorem 2 (Computing Feature-Based Market Segmentation). Suppose that

V = µ(X)+ε where ε is log-concave, X |= ε, and E[ε] = 0. Let n= |supp(µ (X))|, and suppose

pε(Xi) for any fixed segment Xi can be computed in time mε. Then the optimal feature-based

market segmentation can be computed in O(n2(k+mε)).

Theorem 2 is our main result, and states that by leveraging the structural properties

in Lemma 2, the optimal policy can be computed quickly and efficiently in terms of the

size of the support of the regression model. Note, we assume µ(X) is finitely supported,

and believe this is natural and corresponds to simply running the regression model back

over the sample of customer outcomes which were used to generate the model. Further, we

assume the running time to compute pε(Xi) as a subroutine is bounded by some number

that is related only to ε. Again, we believe this assumption is natural since when ε is

log-concave, the revenue function for some sample pPr(x+ ε ≥ p) is unimodal in p, and

the price of the segment pε(Xi) can be computed simply running a binary search for the

optimal price on the range of prices [pε(minx∈Xi µ (x)), pε(maxx∈Xi µ (x))] by Lemma 2(c).

Lastly, we note that when the error distribution is discrete, there is a corresponding notion

of discrete log-concavity Saumard and Wellner (2014), under which our results continue

hold without modification.

In this section, we have characterized when and how we can compute FBMSP optimally,

in the subsequent sections we turn our attention to tuning and implementing it as a revenue

management strategy.

4. Analyzing Feature-Based Market Segmentation and Pricing

In the previous section, we studied how to compute the optimal FBMSP under some

assumptions, for a given number of segments/prices k. We showed that while, in general,
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it is hard to do so, in the important and realistic case when error is log-concave, the opti-

mal policy has an intuitive structure that allows for easy computation. In this section,

we continue to build on the structural insights of the last section, and show that beyond

just computation, optimal FBMSP inherits a number of attractive properties and perfor-

mance guarantees that may help guide practitioners in implementing such policies, and

particularly in deciding how many segments to use.

Throughout this section, when the underlying valuation model varies we will use a super-

script to explicitly identify the valuation distribution with which the revenue is computed

i.e., Rµ(X)+ε
kXP is the standard revenue of FBMSP, Rµ(X)

kXP is the revenue of FBMSP with no

error in valuation model, and so on.

4.1. FBMSP vs. Feature-Based Personalized Pricing

In this subsection, we study the relative gaps between the optimal FBMSP and the natural

upper bound of feature-based personalized pricing, paying close attention to how this gap

informs a good choice of k. As mentioned in the introduction, FBMSP closely resembles

real-world data-driven semi-personalized pricing strategies where sellers are constrained in

the number of the segments/prices they can offer. Specifically, in FBMSP the number of

prices and segments is capped at k, whereas feature-based personalized pricing is equiv-

alent to FBMSP when k→∞. In fact, for any market where valuations are distributed

according V = µ (X)+ ε, and X |= ε, the revenue of a seller implementing feature-based per-

sonalized pricing can be succinctly described as an expectation over the revenue function

i.e., limk→∞Rµ(X)+ε
kXP := EX∼FX

[Rε(µ (X))], since the seller offers the optimal price for each

context x which garners revenue Rε(µ (x)).

Intuitively then, a good choice of k should be one that is not too large, so as to be imple-

mentable, but one that is still close to the maximum achieveable revenue of personalized

pricing, i.e., one that shrinks the gap,

EX∼FX
[Rε(µ (X))]−Rµ(X)+ε

kXP . (2)

One difficulty that may be encountered when attempting to choose k to reduce Eq. (2)

is that it is sensitive to the error distribution ε, which may be hard to know precisely or

require extensive market research to obtain. It may be preferable for an analyst attempting

to choose k to work with an upper bound on this difference that is agnostic to the true error
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distribution. Interestingly, by assuming there is no error an analyst can achieve precisely

such an upper bound. In the following theorem we show that one can bound the loss

between FBMSP and feature-based personalized pricing by examining the gap between

the two policies when ε is assumed to be 0 a.s. We will refer to this loss as model market

loss, since it depends only on µ (X) and not the underlying error distribution.

Theorem 3 (Model Loss vs. True Loss). Suppose V = µ(X) + ε, X |= ε, and E[ε] =

0. Then,

EX∼FX
[Rε(µ (X))]−Rµ(X)+ε

kXP︸ ︷︷ ︸
Actual Market Loss

≤ EX∼FX
[µ(X)]−Rµ(X)

kXP︸ ︷︷ ︸
Model Market Loss

.

Theorem 3 gives a theoretical foundation through which an analyst can analyze the

performance of FBMSP for various k directly in the model without worrying about the

particular form of the error distribution. Whatever loss is perceived in the model market

bounds the true loss in practice automatically.

Further, we note that the proof of Theorem 3 is constructive, and implies a simple

heuristic for setting feature-based market segmentation and pricing strategies when ε is not

log-concave, or ε is unknown. In these instances, a seller can simply compute the optimal

k-FBMSP letting ε be 0 a.s. In this situation, the optimal policy is interval and can be

described by segmentation end points {si}ki=0 on the model market µ(X), which can be

used to generate the segments Xi. From those segments, since ε is either unknown or not

tractable to work with computationally, the firm can instead perform price experimentation

to learn the prices that maximize pε(Xi) Pr (si + ε≥ pε(Xi)), and offer that price on each

segment. While both the partition into segments {Xi}ki=1, and the prices offered on each

segment {pε(Xi)}ki=1 may be sub-optimal under the true error, such a strategy is guaranteed

to earn more than Rµ(X)+ε
kXP +Rµ(X)

kxP − EX∼FX
[µ(X)] by rearranging Theorem 3, and this

guarantee smoothly tends to the optimum as the error in the model diminishes.

Theorem 3 allows an analyst to search for a choice of k without referring to the error

distribution, a next natural question to ask is then, how long can this search take? That is,

at what rate does RkXP to converge to the revenue of feature-based personalized pricing?

In our next theorem we show this convergence is linear in k, and quite fast when the range

of valuations is not too wide.
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Theorem 4 (Bounded Loss with k Segments). Suppose V = µ(X)+ ε, X |= ε, and

E[ε] = 0. Let L= infxµ (x) and U = supxµ (x), then

EX∼FX
[Rε(µ (X))]−Rµ(X)+ε

kXP ≤ U −L
k

.

The proof of Theorem 4 constructs a (suboptimal) segmentation strategy by equally par-

titioning the quantile space. Interestingly, the dependence O
(
1
k

)
appears typical for many

valuation distributions, as we plot in Fig. 4. Intuitively, this behavior can be explained

in the following way. As we segment into smaller pieces, any distribution with a smooth

density appears locally uniform on each segment. Example EC.3 establishes that the con-

vergence rate for a uniform matches Theorem 4 up to constant factors, suggesting that, at

least for large k, the rate should also be approximately tight for many distributions.

Figure 4 Difference between FBMSP and feature-based personalized pricing for standard distributions.

Note. Depicted is the revenue loss versus the number of segments for three standard error distributions, and when

predicted customer valuations are drawn uniformly from [1,10] i.e., µ (X) ∼ Uniform[1,10]. For simplicity, in the

plots we use RkXP and E[Rε(µ (X))] to denote Rµ(X)+ε
kXP and EX∼FX [Rε(µ (X))], respectively. In the left panel, the

prediction error ε ∼ N (0,1). In the middle panel, the prediction error ε ∼ Uniform[−1,1]. In the right panel, the

prediction error follows a Weibull distribution where the shape parameter is 5 and scale parameter is 1. In each

panel, we plot the revenue loss versus the bound U−L
k

in Theorem 4. We note the convergence rate for all three error

distributions appears to be Θ(1/k).

4.2. Revenue Concavity in the Number of Segments

Theorems 3 and 4 give an analyst insight into how to handle the error when searching for

k, and a bound on how large a k may be needed to achieve a desired level of revenue loss.

In the final result of this section, we show a nice structural property of the optimal revenue

that an analyst can use to further hone their search for k. Specifically, in Theorem 5 we

show that when the residual is log-concave, the revenue of FBMSP is concave in the number

of segments.

Theorem 5 (Segmentation Concavity). Suppose that V = µ(X) + ε where ε is log-

concave, X |= ε, and E[ε] = 0. Then {R(k+1)XP −RkXP}∞k=1 is a non-increasing sequence.
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Concavity in terms of k has the operational interpretation that the revenue garnered by

additional segments has diminishing marginal returns. Such a property is not guaranteed

in general, and especially not for heuristic segment-then-price approaches, as we will see

in Section 5. Moreover, combining Theorems 3 and 4 and Theorem 5 together allows an

analyst to search for the best choice of k via an elbow method (Bholowalia and Kumar

2014) on the model market. Such a method results in a k with a provable guarantee on the

loss (Theorem 3), is likely quite small (Theorem 4), and further the elbow will be unique

(Theorem 5).

In the next section we implement our segmentation and pricing strategy on real data

and illustrate it’s advantages versus segment-then-price heuristics.

5. Case Study: Setting Mortgage Interest Rates

In Section 3, we showed how to find jointly optimal FBMSP when a seller has trained

a regression-based valuation model with independent, log-concave residuals. Then in Sec-

tion 4, we provided a set of results to aid in the analysis of FBMSP policies and guide the

choice of k, the number of segments/prices. In this section, we perform a case study to

highlight some features of our approach, which we compare and contrast with prominent

heuristic approaches for segment-then-price (STP). Specifically, using a real data set of

home mortgage offers and acceptances in Pennsylvania in 2020, we build a probit regression

model to predict the probability that an applicant will take a mortgage at an offered inter-

est rate. Next, we transform the probit regression model into a model of customer valuation

measured as the maximum interest rate they will accept. We then compare our optimal

method for FBMSP with STP via a number of different simulations on the data set. All data

and code for this section are publicly available at https://github.com/tcui-pitt/FBMSP.

5.1. Description of Data Set

Our case study is based on a dataset collected in accordance with the Home Mortgage

Disclosure Act (HMDA) (the HMDA website where the data is hosted is https://ffiec.

cfpb.gov/). Specifically, we downloaded the data provided by all financial institutions

in Pennsylvania who had offered a loan for the purpose of enabling a home purchase in

2020. The dataset consists of information about the applications, including demographic

information about the applicant, their income level, the loan amount the bank offered, the

https://github.com/tcui-pitt/FBMSP
https://ffiec.cfpb.gov/
https://ffiec.cfpb.gov/
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Variable Type Description and Statistics

Action taken Binary The action taken on the covered loan or application

• 1 (accepted), Frequency = 11491, Percent = 77.0%

• 0 (rejected), Frequency = 3425, Percent = 23.0%

Interest rate Continuous The interest rate for the covered loan or application (%)

• Mean = 3.4%, Std = 0.9%

Income Continuous Applicant’s gross annual income (in thousands of dollars)

• Mean = 110.08, Std = 94.76

Derived race Binary Single aggregated race categorization derived from applicant race fields

• 1 (white), Frequency = 12724, Percent = 85.3%

• 0 (not white), Frequency = 2192, Percent = 14.7%

Derived gender Binary Single aggregated gender categorization derived from applicant gender fields

• 1 (joint), Frequency = 5799, Percent = 38.9%

• 0 (male or female), Frequency = 9117, Percent = 61.1%

Table 1 Descriptions and summary statistics for explanatory variables in our home mortgage dataset.

interest rate, and whether or not it was accepted. After removing unsuitable rows (rows

with data missing or extreme outliers), there were 14,916 approved applications in total,

and 11,491 (77%) of the approved applications resulted in a loan that was accepted at the

bank offered interest rate. Table 1 summarizes the variables (features of customers) we use

in our case study.

As a preliminary, note we can think of the interest rate the bank offers on the loan

as a take-it-or-leave-it price, and the customers choice whether or not to accept the loan

as a decision to purchase or not purchase at a given price. Using the price variation in

this data, we will estimate a customer valuation model so that we can train and evaluate

market segmentation and pricing models. In the first step, we use a probit regression

model to predict the probability that a customer will take the offered interest rate. Table 2

shows the coefficient estimates for the probit regression model, and Fig. EC.5 shows the

prediction of the probability a customer will take the approved application for a given

interest rate. We then transform our probit model into a linear valuation model of the

form V |x = µ (x) +N (0, σ), where x is a feature vector including the interest rate, income

level of the customer, and demographic information, and µ(x) = xtβ. Our transformation

from probit regression model to linear valuation model follows Cameron and James (1987),

for a short primer describing such transformations, see Section C in the appendix. All
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subsequent feature-based segmentation and pricing policies will be based on this derived

linear valuation model, V |x = µ (x) +N (0, σ).

5.2. Comparison with Segment-then-Price

To assess the real impact of our optimal FBMSP policies, we will compare against heuristic

segment-then-price (STP) policies. For STP, we will segment customers using the popular

k-mediods algorithm (Reynolds et al. 2006, Schubert and Rousseeuw 2019, 2021) with

Gower distance (Gower 1966, 1967). The price optimization is then done over the found

segments, and can be computed in polynomial time for error with finite support.

First, we examine the segments generated by STP compared with those from optimal

FBMSP. Fig. 5 shows that STP will group customers first based on differences in gender

and/or race. Gender and race are certainly heterogeneous across our data set, however,

these differences are not necessarily the distinctions that are revenue-maximizing to delin-

eate on. In comparison, optimal FBMSP will segment customers into different groups based

on their valuations, which is only weakly correlated with gender/race in our data. There-

fore, compared to STP, FBMSP will not only achieve better revenue but does so in an

explainable way by grouping customers with similar predicted valuations, instead of merely

similar demographic features which may have negative social or legal ramifications.

To compare the difference in revenue garnered by STP and FBMSP, we will examine

the difference in total interest a customer will pay on average over the lifetime of the loan

(i.e. average revenue per customer), where the interest is calculated using the standard

fixed monthly payment formula (Capinski and Zastawniak (2003)). In Fig. 6, we plot the

expected revenue the firm can get from one customer on average (across all segments),

against the number of segments. We first note that the revenue per customer is increasing

for both FBMSP and STP model. However for FBMSP, the revenue the firm can get

from each customer on average is concave in the number of segments, while in the STP

Variable Estimate Std. Error z value Pr(> |z|) Significance

(Intercept) 3.8869 0.1126 34.5314 < 2.2× 10−16 ***

Interest Rate -0.8704 0.0277 -31.4735 < 2.2× 10−16 ***

Income -0.0009 0.0002 -4.1142 3.885× 10−05 ***

Derived race 0.4709 0.0545 8.6374 < 2.2× 10−16 ***

Derived gender 0.1721 0.0441 3.9003 9.606× 10−5 ***

Table 2 Probit regression coefficients. Significance levels: ***: < 0.001, **: < 0.01, *:< 0.05.
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Figure 5 Segments for STP and FBMSP.

Note. Here we plot segments for STP and FBMSP when the number of segments k= 4. Since both derived gender

and derived race are binary variables, we add some random noise to each point for clarity of presentation (without

noise, all points of the same color would be on top of one another in the left panel). In the left panel, the segments

are obtained using k-medoids algorithm. In the right panel, we use dynamic programming to do optimal FBMSP.

model this is clearly not the case. In our case study, STP often gets “stuck” at small

choices of k, and requires a 3+ of segments before it can achieve strong revenue, whereas

FBMSP is guaranteed to get the most revenue out of a small number of segments. We see

the differences then between FBMSP and STP are most pronounced when only a small

number of segments are used, which is precisely the case of interest in industry. We further

note that for both models, while smaller error in the prediction model will yield higher

revenue, the gap between the two strategies is also more pronounced when the error is

small, suggesting that for sophisticated firms with high quality feature data the benefits

of FBMSP are even greater.

Figure 6 Average interest comparison between STP and FBMSP.

Note. Here we plot the average interest per customer for STP and FBMSP for different levels of prediction error

in our valuation model. In the left panel, the standard deviation of prediction error is σ = 0, in the middle panel,

the standard deviation of prediction error is σ= 0.5, in the right panel, the standard deviation of prediction error is

σ= 1.

5.3. Finding the Optimal Number of Segments using Regression Model

One additional benefit of the concavity of optimal FBMSP is it enables us to easily choose

the number of segments via the elbow method heuristic. The elbow method is the most
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commonly used heuristic for finding the optimal number of segments for unsupervised

learning. The intuition is that one should choose a number of segments so that adding

another segment doesn’t give much better modeling of the data (see Bholowalia and Kumar

(2014) for more discussion about the elbow method and its applications). To use the elbow

method, one prerequisite is that the objective function is monotone in the number of

segments. In general, the objective function, revenue per customer, is not necessarily even

increasing for the STP. Unlike STP, in Theorem 5 we showed that the revenue is concave in

the number of segments k. At some value for k, the revenue increases dramatically, and after

that, it reaches a plateau, and increasing the number of segments does not dramatically

increase revenue. In Fig. 6, for our FBMSP model, 2 or 3 is the elbow of the revenue per

customer vs. k plot, whereas for STP, the possible elbow is at 8 or 9, a prohibitively large

number of segments in practice.

6. Conclusions

Increasingly rich consumer profiles and choice models enable retailers to personalize prices

for customers at finer and finer levels. However, building such tools comes at a steep

investment cost in the form of technology, data scientists, marketing, etc. Motivated by

this trade-off, and by a desire to improve on common heuristic approaches, we provide a

framework to compute and analyze semi-personalized, feature-based market segmentation

and pricing policies under realistic assumptions about how firms predict the valuations of

customers.

Specifically, we define and study the feature-based market segmentation and pricing

problem, where sellers have trained a regression model to predict customers’ valuations

using their features. We first prove the computation of optimal feature-based market seg-

mentation and pricing is NP-hard for independent residuals, and provide a (1−1/e) approx-

imation algorithm. We then show that with the additional assumption of log-concavity

on the prediction error, the optimal policy has a simple interval structure that can be

computed in cubic-time via dynamic programming.

We then analyze the properties of optimal feature-based market segmentation and pric-

ing. We show that the loss of k-FBMSP versus a fully personalized pricing bench market

can be upper bounded by the (noiseless) model market loss, and decays at a tight rate

of Θ(1/k). We also showed the revenue of optimal FBMSP is concave in the number of
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segments k. Taken all together, this analysis enables practitioners to find the most suitable

k by a simple elbow method, and without loss of much revenue.

Overall, our work seeks to deepen our understanding of semi-personalized pricing strate-

gies, and demonstrate that they are computable, and effective when compared to com-

plicated fully personalized pricing strategies. There are many interesting and important

directions left to consider for future work, we highlight three of them here. First, this paper

assumes the production cost of the good is uniform over all segments. Follow-up work

may consider heterogeneous production costs among different segments, and ask whether

the optimal FBMSP in this case still uses interval segments when the residuals are log-

concave. Second, it may also be interesting to consider the approximation ratio for interval

segmentations facing general error distributions. Example EC.2 demonstrates that inter-

val segmentation are not optimal for general error distributions, but how far it is from

the optimal segmentation in the worst case is unknown. We emphasize that the 1− 1/e

approximation algorithm presented in Remark 1 does not compute interval segmentations,

and it may indeed be the case that the optimal interval segmentation (which can always

be computed in polynomial time via Theorem 2) could achieve a stronger approximation

guarantee. Finally, we assume the firm can charge customers in different segments any seg-

ment level price. In practice, the firm may only be able to offer a price menu for customers

to choose from. One may also consider models similar to FBMSP, where customers react

to and choose from a size k price menu.
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Appendix A: Omitted Examples

Example EC.1 (pε(x) can be discontinuous). Suppose µ(X) ∼ Uniform[1,2] (or any other continu-

ous distribution on [1,2]) and ε is either -.5 or .5 with probability 1
2
. Then for every x ≤ 1.5, the optimal

price is pε(x) = x+ .5, and pε(x) = x− .5 otherwise. Thus at 1.5 pε(x) is discontinuous, and by Lemma 1 the

revenue function Rε(x) is non-differentiable. �

Example EC.2 (Optimal Segmentations Need Not be Interval). In this example we give µ(X)

and ε such that the optimal segmentation and pricing is non-interval. Specifically, for any number k ≥
2, assume µ(X) is uniformly distributed on the set {k, k+ 2, k+ 4, · · · ,3k}, and ε is either k or −k with

probability 1
2
, respectively. Note that if we consider fully personalized pricing, the optimal price for {k} is

2k, and the optimal price for {3k} is either 2k or 4k. Therefore, the unique optimal k-market segmentation

and pricing uses segments,

µ(X1) = {k,3k}, µ(X2) = {k+ 2}, · · ·µ(Xk) = {k+ 2(k− 1)},

with corresponding price for each segment,

p(X1) = 2k, p(X2) = 2k+ 2, · · · , p(Xk) = 2k+ 2(k− 1).

To see this segmentation achieves the optimal revenue note the revenue it achieves is the same as from fully

personalized pricing. Further since pε(k) = pε(3k), and this is not true for any other predicted valuations,

no other k-segmentation can achieve the same revenue. As the first segment is not interval, the optimal

segmentation thus needs not to be interval for any k. �

Example EC.3 (Tightness of Theorem 4). Suppose the regression model has no error, i.e. V |x =

µ (x), and let µ(X) ∼ Uniform[0, t] for some t > 0. Then, E[Rε(µ (X))] = E[V ] = t
2
. To compute RkXP for

some k, note by Theorem 2 the optimal segmentation here is interval and further each segment can be

described by a left and right endpoint in the space of predicted valuations. Let 0< s0 < . . . < sk = t describe

those segments (i.e. Xi = {x|µ(x) ∈ [si−1, si)}) with corresponding prices p1, . . . , pk. It is easy to see since

ε= 0, the optimal price and segmentations must satisfy si−1 = pi for i= 1, . . . , k since, if not, increasing the

segment interval si−1 up to pi only increases revenue.

Now, on segment Xi, the conditional distribution of V is still uniform, so the contribution of that segment

to E[V ] is
si+si−1

2
· si−si−1

t
for all i, since only

si−si−1

t
fraction of the market is in this interval. By contrast,

for i= 1, . . . , k, the k-market segmentation strategy on segment i earns revenue p(Xi) Pr(µ(X)≥ p(Xi)|X ∈
[si−1, si) Pr(X ∈ [si−1, si) = si−1

si−si−1

t
since pi = si−1, and thus all customers in the segment buy. The

difference in revenue is then

E[Rε(µ (X))]−RkXP =
s20
2t

+

k∑
i=1

si + si−1
2

· si− si−1
t

− si−1
si− si−1

t

=
s20
2t

+
1

2t

k∑
i=1

(si− si−1)2 =
1

2t

(
(s0− 0)2 +

k∑
i=1

(si− si−1)2

)
.

By inspection, for a fixed s0 = t
k+1

, the segmentation which minimizes this difference is equispaced, i.e.,

si = si−1 + t
k+1

for i= 1, . . . , k. Plugging in gives E[Rε(µ (X))]−RkXP = t
2(k+1)

= E[V ]

k+1
. �
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Appendix B: Omitted Proofs

B.1. Omitted Proofs from Section 2

Proof of Lemma 1. (a) Fix some ε and positive real numbers x1, x2 such that x1 <x2 and recall θε(x) :=

pε(x)− x is the difference between the price and x. Further recall pε(x1), pε(x2) are prices that maximize

pF ε(p−x1) and pF ε(p−x2) respectively. Thus, by optimality we have the following two inequalities

(x1 + θε(x1))F ε(θε(x1))≥ (x1 + θε(x2))F ε(θε(x2)), (EC.1)

(x2 + θε(x2))F ε(θε(x2))≥ (x2 + θε(x1))F ε(θε(x1)). (EC.2)

Rearranging the two inequalities yields,

x1 + θε(x1)

x1 + θε(x2)
≥ F ε (θε(x2))

F ε (θε(x1))
≥ x2 + θε(x1)

x2 + θε(x2)
.

Consequently,

(x1 + θε(x1)) (x2 + θε(x2))≥ (x1 + θε(x2)) (x2 + θε(x1)) ,

Simplifying the expression, we get

(x2−x1)θε(x1)≥ (x2−x1)θε(x2).

Finally, noting x2 − x1 > 0, the inequality is equivalent to θε(x1) ≥ θε(x2) and thus the margin monotone

decreasing.

(b) As in (a), fix some ε and positive real numbers x1, x2 such that x1 ≤ x2. Then x1 + ε≤st x2 + ε in the

sense of first order stochastic dominance, and it is well known that stochastic dominance of the valuations

implies Rε(x1)≤Rε(x2) (see for instance Hart and Reny (2015) for an extended discussion). Combining this

observation with Eqs. (EC.1) and (EC.2) above yields,

Rε(x2)−Rε(x1)≥ (x2 + θε(x1))F ε(θε(x1))− (x1 + θε(x1))F ε(θε(x1)) = (x2−x1)F ε(θε(x1)),

Rε(x2)−Rε(x1)≤ (x2 + θε(x2))F ε(θε(x2))− (x1 + θε(x2))F ε(θε(x2)) = (x2−x1)F ε(θε(x2)).

Dividing both sides by x2−x1 gives,

F ε(θε(x1))≤ Rε(x2)−Rε(x1)

x2−x1

≤ F ε(θε(x2)). (EC.3)

When pε is continuous then θε is also continuous, and taking x1→ x2 squeezes the derivative to be F ε(pε(x)−

x) as desired.

(c) Rε(x) was noted to be increasing in the proof of (b). Now to prove continuity, fix ε and positive real

numbers x1, x2 such that x1 <x2. Then,

Rε(x1)≤Rε(x2) = (x2 + θε(x2) + (x2−x1)− (x2−x1))F ε(θε(x2))≤Rε(x1) + (x2−x1),

where the last inequality follows from distributing and applying Eq. (EC.2), and the fact that F ε(·) ≤ 1.

Taking x1→ x2 gives us the continuity of Rε(x).
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For convexity, again fix positive real numbers x1, x2 and also λ∈ (0,1). Then,

Rε(x1) = pε(x1)F ε(pε(x1)−x1)

≥ (pε(λx1 + (1−λ)x2) + (1−λ)(x1−x2))F ε(pε(λx1 + (1−λ)x2)− (λx1 + (1−λ)x2)),

where the inequality follows from noting that pε(x1) is revenue optimal for x1 + ε and any other price can

earn no more. Similarly,

Rε(x2) = pε(x2)F ε(pε(x2)−x2)

≥ (pε(λx1 + (1−λ)x2)−λ(x1−x2))F ε(pε(λx1 + (1−λ)x2)− (λx1 + (1−λ)x2)).

Combine the two inequalities above, we get

λRε(x1) + (1−λ)Rε(x2)≥Rε(λx1 + (1−λ)x2)),

which means Rε(x) is convex in x. �

B.2. Omitted Proofs from Section 3

Proof of Theorem 1. We will prove hardness by showing the Hitting set problem can be reduced to an

instance of k feature-based market segmentation and pricing (kXP). Let X be the ground set of elements

of size, |X | = m, and let {Hi}ni=1 be a collection of subsets of X . Consider the decision version of the

hitting set problem, which asks whether there exists a subset of X ∗ ⊂ X , |X ∗| ≤ k, such that X ∗ has non-

empty intersection with each Hi. To build a corresponding k-market segmentation and pricing problem,

suppose we have n customers such that each customer’s valuation is xi + ε (equivalently, µ (X) is uniformly

supported on these valuations), where i= 1,2, ..., n. Let pj = n+ j−1
m

, for j = 1,2, ...,m, and let x1 = p1, and

xi = xi−1 + p1
2(i−1) + pm

2i
, for i = 2, ..., n. We will now construct an ε ∼ Fε such that, for each xi, Rε(xi) is

maximized at price pj if and only if in the hitting set problem the subset Hi contains element xj .

Our construction of ε is supported on numbers of the form pi− xj . Before constructing ε, note that pj is

strictly increasing in j, and that pj − xi < pj′ − xi as long as j′ > j. Further note pm − xi+1 < p1 − xi since

by the definition of xi and xi+1, xi+1−xi > p1
2n

+ pm
2n
> 1 and since pm− p1 = m−1

m
< 1. Let t1,1 = p1−xn, ...,

tj,i = pj −xn+1−i, ..., tm,n = pm−x1, and let t0,n =−xn, and tm,n+1 = pm. Thus, we have

t0,n < t1,1 < t2,1 < . . . < tm,i < t1,i+1 < t2,i+1 < . . . tm−1,n < tm,n < tm,n+1. (EC.4)

Now we are ready to define the complementary cumulative distribution function (cCDF) of ε. We will let

ε be such F ε(t0,n) = 1, F ε(tm,n+1) = 0, and working backwards recursively from F ε(tm,n+1) as follows:

F ε(tj,i) =


i
pj
, if xj ∈Hi

F ε(tj+1,i), if xj /∈Hi and j <m

F ε(t1,i+1) if xj /∈Hi and j =m, i < n

0 otherwise.

Note this construction is well defined and is quadratically supported, an example what F ε looks like is

provided in Fig. EC.6. Further, for any value t such that tj,i ≤ t < tj+1,i, F (t) = F (tj,i). Now we need to
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check that F ε is non-increasing and thus a properly defined cCDF, and also that pjF ε(pj − xi) is revenue-

maximizing only when j, i are such that xj ∈Hi.

To the first point, since pj ≥ n for all j = 1,2, ...,m, and {pj} is increasing, therefore, i
pj
< i

pj+1
. Then, to

show F ε is non-increasing, we only need to show i
pm

< i−1
p1

. Note that

i

pm
− i− 1

p1
=
ip1− (i− 1)pm

p1pm

=
i(p1− pm) + pm

p1pm
> 0,

where the inequality follows from the fact that pm − p1 = m−1
m

< 1 for 1 ≤ i ≤ n, and pm > n. Thus F ε is

non-increasing, i.e., F ε is a proper cumulative distribution function.

Next, we show that pF ε(p−xi) = i iff p= pj and xj ∈Hi, and for all other prices the revenue pF ε(p−xi) is

strictly less than i. By the definition of F ε(pj−xi), if xj ∈Hi, F ε(pj−xi) = i
pj

, consequently, pjF ε(pj−xi) = i.

So now suppose price p satisfies F ε(p− xi) = F ε(pj′ − xi′) = i′

pj′
. To simplify the discussion, we take the

largest price p such that F ε(p−xi) = F ε(pj′−xi′), i.e., p−xi = pj′−xi′ , and by rearranging p= pj′−xi′+xi.

All other prices less than pj′ − xi′ + xi and which satisfies F ε(p− xi) = F ε(pj′ − xi′) = i′

pj′
will give us less

revenue. Now we want to show that pF ε(p−xi)< i, i.e.,

(pj′ −xi′ +xi)
i′

pj′
< i.

If i′ < i, the inequality is the same as

xi−xi′ ≤
i− i′

i′
pj′ .

By the definition of pj and xi,

xi+1−xi =
p1
2i

+
pm

2(i+ 1)
<
p1
i
,

where the inequality comes from pm
p1
< n+1

n
. Therefore,

xi−xi′ ≤
i∑

j=i′

p1
j
<
i− i′

i
p1 <

i− i′

i
pj .

Similarly, if i′ > i, pF ε(p−xi)< i is equivalent to

xi′ −xi >
i′− i
i′

pj′ .

Now, by the definition of pj and xi,

xi+1−xi =
p1
2i

+
pm

2(i+ 1)
>

pm
i+ 1

,

where the inequality comes from pm
p1
< n+1

n
. Therefore,

xi′ −xi ≥
i∑

j=i′

pm
j+ 1

>
i− i′

i
pm >

i− i′

i
pj ,

as desired.

Finally, to determine whether there exists a subset of X∗ ⊂ X, |X∗| ≤ k, such that X∗ has non-empty

intersection with eachHi, it is equivalent to determine whether there is a k feature-based market segmentation

and pricing that yields the maximum revenue 1 + 2 + 3 + . . .+ n = n(n+1)

2
. Since the hitting set problem

NP-hard, thus FBMSP is also NP-hard. �
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Proof of Lemma 2. (a) First we will show pε(x) is increasing. Since fε is log-concave, F ε is also log-

concave (see Bagnoli and Bergstrom (2005) for an extensive overview of the transformations that preserve

log-concavity). Further, d
dx

log(F ε(x)) = −fε(x)
F ε

which by concavity implies the inverse hazard rate, F ε(x)

fε(x)
,

is decreasing in x. Thus pε(·) is unique, satisfies first order conditions for revenue optimality, d
dp
pF ε(p −

x)|p=p(x) = 0, and can be written as pε(x) = F ε(pε(x)−x)
fε(pε(x)−x)

. Recalling by Lemma 1(a) pε(x)−x is decreasing, it

thus follows that pε(x) must be an increasing function of x.

(b) As in (a) note, if f(x) is log-concave, F ε is a log-concave function, thus it has Pólya frequency of

order 2 (PF2), which is equivalent to that statement that, for any real numbers x1, x2, and y1, y2, such that

x1 <x2 and y1 < y2, then F ε(x1−y2)
F ε(x1−y1)

≤ F ε(x2−y2)
F ε(x2−y1)

(see Saumard and Wellner (2014), Section 11).

Now, let {Xi}k1,{pε(Xi)}k1 be the optimal segmentation and pricing and suppose WLOG that the prices

are distinct. Further suppose the optimal segmentation was not interval, then there exists x1,x2,x3 such

that µ(x1)< µ(x2)< µ(x3), but with x1,x3 ∈ Xi, and x2 ∈ Xj for some i 6= j. Suppose pε(Xi)< pε(Xj) (the

opposite case when pε(Xi) > pε(Xj) follows by an identical argument, swapping x3 with x1) and note by

optimality of the segmentation,

pε(Xi)F ε(pε(Xi)−µ(x3))> pε(Xj)F ε(pε(Xj)−µ(x3)),

pε(Xj)F ε(pε(Xj)−µ(x2))> pε(Xi)F ε(pε(Xi)−µ(x2)).

Combining these two inequalities gives

F ε(pε(Xi)−µ(x3))

F ε(pε(Xj)−µ(x3))
>
pε(Xj)
pε(Xi)

>
F ε(pε(Xi)−µ(x2))

F ε(pε(Xj)−µ(x2))
.

Which can be further rearranged to F ε(pε(Xi)−µ(x3))

F ε(pε(Xi)−µ(x2))
>

F ε(pε(Xj)−µ(x3))

F ε(pε(Xj)−µ(x2))
which contradicts the PF2 property.

Thus the optimal segmentation must be interval and Xi = {x|µ (x) ∈ [si−1, si)} for some real numbers si <

si+1.

(c) To show pε(Xi) = pε(x) for some x ∈ Xi, let x′ = arg minx∈Xi µ(x) and recall pε(Xi) =

arg max
∫
µ(x)∈[si−1,si)

pF ε(p − s)f(µ−1(s))ds. Now suppose pε(Xi) < µ(x′). By log-concavity, each function

Rε(µ(x), p) := pF ε(p−µ(x)) is unimodal, and thus increasing in p for p≤ pε(µ(x)),

pε(Xi)F ε(pε(Xi)− s)≤ pε(µ(x′))F ε(pε(µ(x′))− s),

for any s∈ [si, si+1], which implies∫
µ(x)∈[si−1,si)

pε(Xi)F ε(pε(Xi)− s)f(µ−1(s))ds≤
∫
µ(x)∈[si−1,si)

pε(µ(x′))F ε(pε(µ(x′))− s)f(µ−1(s))ds,

thus pε(Xi)≥ pε(x′). A symmetric argument similarly shows pε(Xi)≤ arg maxx∈Xi pε(x). �

Proof of Theorem 2 Suppose the firms prediction model µ(X) is supported on n values {xi}ni=1, occurring

with probabilities {qi}ni=1, where x1 ≤ x2 ≤ . . .≤ xn. By Lemma 2, the optimal segmentation can be indexed

by the sequence {si}ki=0 which is contained in the support of µ (X). Let the optimal price for segment [si−1, si)

be pε ([si−1, si)) i.e.

pε ([si−1, si)) = arg max
pi

piPr (µ(x) + ε≥ pi|µ(x)∈ [si−1, si)) Pr(µ(x)∈ [si−1, si)).
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We wish to find {si}ki=0 ⊂ {xi}ni=1 that maximizes

k∑
i=1

pε ([si−1, si)) Pr (µ(x) + ε≥ pε ([si−1, si)) |µ(x)∈ [si−1, si)) Pr(µ(x)∈ [si−1, si)).

We suppose the time to compute pε(si, si+1) for any segment [si, si+1) is upper bounded by mε. Now note

there are at most n(n+1)

2
intervals to consider, and we can create a table to store the optimal prices for all

possible intervals in O(n2mε) time.

We now give a dynamic programming solution that uses time O(kn2) and to populate a table of size kn.

Define D[n′, k′] as the optimal k′-market segmentation that considers only the n′ lowest predicted valuations

{(xi, qi)}n
′

i=1, our goal is to compute D[n,k] which is the revenue of the optimal FBMSP (the optimal

policy can further be reconstructed by standard backward search). Our algorithm depends on the following

observation: consider the optimal k-market segmentation and suppose [sk−1, sk] = [xik , xn] defines the kth

segment. If one considers the market without the customers in the kth segment, the remaining k−1 segments

must be an optimal (k− 1)-market segmentation on {(xi, qi)}ik−1i=1 . Formally, we express this observation as

the following recursion,

D[n′, k′] = max
l∈[n′−1]

D[l, k′− 1] + pε ([si−1, si))

n′∑
i=l+1

Pr (µ(x) + ε≥ pε ([si−1, si)) |µ(x)∈ [si−1, si)) qi, (EC.5)

which states that the optimal k′-market segmentation on the lowest n′ valuations, is equal to some optimal

(k′−1)-segmentation on a smaller market, plus the value of the k′th segment. Using Eq. (EC.5) we may pop-

ulate a table of size kn, starting at D[0,0] = 0, and computing column-wise. The maximization in Eq. (EC.5)

takes at most n′ − 1 calculations. If the optimal price and revenue for each segment are stored before the

iteration, the dynamic programming can be finished in O(kn2) time. Thus, the optimal feature-based market

segmentation can be computed in O(n2(k+mε)) time.

�

B.3. Omitted Proofs from Section 4

Proof of Theorem 3 Let {si}ki=0 ∈ Rk+1 denote an optimal interval k-market segmentation for Rµ(X)
kXP .

Consider the sub-optimal feature-based market segmentation which uses segments Xi = {x |µ (x)∈ [si−1, si)}
and prices pi. Note for all x∈Xi, piPr (µ (x) + ε≥ pi)≥Rε(si−1) and thus summing over all segments

Rµ(X)+ε
kXP ≥

k∑
i=1

∫
µ(x)∈[si−1,si)

piPr (µ(x) + ε≥ pi)fX(x)dx≥
k∑
i=1

Rε(si−1)

∫
µ(x)∈[si−1,si)

fX(x)dx (EC.6)

Now,

EX∼FX
[Rε(µ (X))]−Rµ(X)+ε

kXP ≤
k∑
i=1

∫
µ(x)∈[si−1,si)

(Rε(µ(x))−Rε(si−1))fX(x)dx Eq. (EC.6)

≤
k∑
i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)F ε(θε(µ(x)))fX(x)dx Lemma 1(b)

≤
k∑
i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)fX(x)dx

=EX∼FX
[µ(Xi)]−Rµ(Xi)kXP

as desired. �
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Proof of Theorem 4. Let L= infx µ (x) and U = supx µ (x), and recalling the proof of Theorem 3 we have,

EV∼F [Rε(V )]−RVkXP ≤
k∑
i=1

∫
µ(x)∈[si−1,si)

(Rε(µ(x))−Rε(si−1))F ε (θε(si−1))fX(x)dx.

Now instead we choose the sub-optimal interval segmentation such that it subdivides the quantile space of

FX into k equal regions i.e., {si}ki=0 such that F (si−1)−F (si) = 1
k

for i= 1, ..., k. Then

Eµ(X)∼F [Rε(µ (X))]−Rµ(X)+ε
kXP ≤

k∑
i=1

∫
µ(x)∈[si−1,si)

(Rε(µ(x))−Rε(si−1))fX(x)dx

≤
k∑
i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)F ε(θε(µ(x)))fX(x)dx Lemma 1(b)

≤
k∑
i=1

∫
µ(x)∈[si−1,si)

(µ(x)− si−1)fX(x)dx

=

k∑
i=0

(si− si−1)

∫
µ(x)∈[si−1,si)

fX(x)dx

=

k∑
i=1

(si− si−1)
(
F (si−1)−F (si)

)
=

∑k

i=1 (si− si−1)

k

=
U −L
k

,

where the third inequality follows F ε (θε(·))≤ 1, the third equality comes from the choice of {si}ki=0. Finally,

summing si− si−1 we get the final equality as desired. �

Proof of Theorem 5. Fix some k ≥ 2, we will prove the rearranged inequality R(k−1)XP +R(k+1)XP ≤
2RkXP by explicitly constructing feasible (but not necessarily optimal) size k segmentations. Note, since ε is

log-concave, by Lemma 2 the optimal segmentation for any k is interval, and can be described by the sequence

of numbers {ski }ki=0 such that X ki = {x|µ (x) ∈ [si−1, si)}. Further, let Sk−1 := {sk−1i }k−1i=0 , Sk := {ski }ki=0 and

Sk+1 := {sk+1
i }k+1

i=0 be the optimal segmentations of size k − 1, k, and k + 1, respectively, as described by

segmentation endpoints. Note by definition sk−1k−1 = skk = sk+1
k+1 = supx µ (x). Our proof will proceed in two

cases.

Case 1: sk+1
1 ≤ sk−1

0 . In this case, the first segment of the optimal (k + 1) segmentation is before

the first segment of the (k − 1) segmentation, see Fig. EC.1 for an illustration. Consider two feasible k

segmentation S ′k = sk+1
0 ∪ Sk−1 and S ′′k = Sk+1 \ sk+1

0 , see Fig. EC.2 for another illustration. Now note the

combined revenue from S ′k and S ′′k fully covers the revenue from Sk−1 (as a subset of S ′k) and Sk+1 except

the revenue from the first segment (all other segments of the optimal (k+ 1) segmentation are covered by

S ′′k ). Now, in the constructed segmentation S ′k, the unaccounted for first segment has end points [sk+1
0 , sk−10 ),

which by assumption contains the first segment of the (k+1) segmentation [sk+1
0 , sk+1

1 ). Note if one segment

subsumes another, it provides more revenue, i.e., if Xi ⊂Xj then

max
p
pPr (µ (x) + ε≥ p|x∈Xi) Pr(Xi)≤max

p
pPr (µ (x) + ε≥ p|x∈Xj) Pr(Xj). (EC.7)

and thus Eq. (EC.7) implies R(k−1)XP +R(k+1)XP ≤RkXP (S ′k) +RkXP (S ′′k )≤ 2RkXP .
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Figure EC.1 Case 1 of Theorem 5.

Note. Depicted are the first segment end points of the an interval segmentation of size k+1 (solid line) and k-1

(dashed line). The first segment
[
sk+1
0 , sk+1

1

)
in the (k+ 1) segmentation is before the first segment

[
sk−1
0 , sk−1

1

)
of

the (k− 1) segmentation.

Figure EC.2 New feasible k-segmentations for case 1 of Theorem 5.

Note. Depicted are the constructed size k interval segmentations. In the left panel S ′k is shown which is equal to the

optimal (k− 1) segmentation plus a new first segment
[
sk+1
0 , sk−1

0

)
. In the right panel S ′′k is shown which is equal to

the optimal (k+ 1) segmentation with the first segment
[
sk+1
0 , sk+1

1

)
removed.

Case 2: There exists i∈ [k− 1] such that sk−1
i−1 ≤ sk+1

i ≤ sk+1
i+1 ≤ sk−1

i . In this case, there is an i such

that segment i+ 1 of the optimal (k+ 1) segmentation that is subsumed by segment i of the optimal (k− 1)

segmentation. As in Case 1, we will construct feasible k segmentations assuming the condition of Case 2

holds. Before constructing the feasible segmentations, we will need two simple facts, both of which follow

from Lemma 2.

Fact 1: If X1 = [s1, s2),X2 = [s1, s2 + ∆),where ∆≥ 0, then pε(X2)≥ pε(X1), (EC.8)

Fact 2: If X1 = [s1, s2),X2 = [s1−∆, s2),where ∆≥ 0, then pε(X2)≤ pε(X1). (EC.9)

Fix the i such that sk−1i−1 ≤ sk+1
i ≤ sk+1

i+1 ≤ sk−1i . Such an arrangement of segmentation points is shown in

Fig. EC.3. Now define the feasible k-segmentations as

S ′k =
{
sk−1j

}i−1
j=1
∪
{
sk+1
j

}k+1

j=i+1
,

and

S ′′k =
{
sk+1
j

}i
j=1
∪
{
sk−1j

}k−1
j=i

.

Each new arrangement of segmentation points consists of splicing the beginning of the (k−1) segmentation

with the end of the (k + 1) segmentation, or vice versa, with the middle segment added or removed. An

example of such a segmentation construction is shown in Fig. EC.4. Note compared to the (k−1) and (k+1)

segmentations, the new segment in S ′k is
[
sk−1i−1 , s

k+1
i+1

)
, and the new segment in S ′′k is

[
sk+1
i , sk−1i

)
, and all the

other segments are the same as segments in the optimal k−1 or (k+ 1) segmentation. The only segments in

the optimal (k− 1) or (k+ 1) segmentation unaccounted for (i.e. not contained in S ′k or S ′′k ) are [sk−1i−1 , s
k−1
i )

and [sk+1
i , sk+1

i+1 ). Now let p1 := pε
(
[sk−1i−1 , s

k−1
i )

)
, p2 := pε

(
[sk+1
i , sk+1

i+1 )
)

be the optimal prices on the those

unaccounted for segments, we will need to determine the prices for each new segments in S ′k and S ′′k such

that the combined revenue from them fully covers the revenue from the unaccounted for segments.
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Note that it is unclear which of p1 and p2 is larger, we will argue in two sub-cases based on their ordering.

Suppose we have p1 ≤ p2, and let the price for new segments in S ′k and S ′′k be

pε
([
sk−1i−1 , s

k+1
i+1

))
= p1, pε

([
sk+1
i , sk−1i

))
= p2.

LetRε([sj−1, sj), p) be the revenue from segment [sj−1, sj) when the price on that segment is p. The difference

in revenue between the new and unaccounted for segments is then,

Rε
([
sk−1i−1 , s

k+1
i+1

)
, p1
)

+Rε
([
sk+1
i , sk−1i

)
, p2
)
−Rε

([
sk−1i−1 , s

k−1
i

)
, p1
)
−Rε

([
sk+1
i , sk+1

i+1

)
, p2
)

=
(
Rε
([
sk−1i−1 , s

k+1
i+1

)
, p1
)
−Rε

([
sk−1i−1 , s

k−1
i

)
, p1
))

+
(
Rε
([
sk+1
i , sk−1i

)
, p2
)
−Rε

([
sk+1
i , sk+1

i+1

)
, p2
))

=Rε([sk+1
i+1 , s

k−1
i ), p2)−Rε([sk+1

i+1 , s
k−1
i ), p1),

where the second equality follows from the fact that
[
sk−1i−1 , s

k+1
i+1

)
⊂
[
sk−1i−1 , s

k−1
i

)
, and

[
sk+1
i , sk+1

i+1

)
⊂[

sk+1
i , sk−1i

)
. Since every element in

[
sk+1
i , sk+1

i+1

)
is less than any element in

[
sk+1
i+1 , s

k−1
i

)
, by Eq. (EC.8) and

Eq. (EC.9), we have the price dominance

p1 ≤ p2 ≤ pε([sk+1
i+1 , s

k−1
i )),

which implies

Rε([sk+1
i+1 , s

k−1
i ), p2)≥Rε([sk+1

i+1 , s
k−1
i ), p1).

Thus, R(k−1)XP +R(k+1)XP ≤RkXP (S ′k) +RkXP (S ′′k ) ≤ 2RkXP . In the second sub-case when p2 ≤ p1, the

proof follows symmetrically now using p2 for the price of the new segment in S ′k and p1 for the price in the

new segment for S ′′k , we omit it for brevity.

Figure EC.3 Case 2 of Theorem 5.

Note. Depicted are the i+1 segment end points of the an interval segmentation of size k+1 (solid line) and i segment

of size k-1 segmentation (dashed line). The i+ 1th segment
[
sk+1
i , sk+1

i+1

)
of (k+ 1) segmentation is fully contained in

the ith segment
[
sk−1
i−1 , s

k−1
i

)
of (k− 1) segmentation.

Figure EC.4 New feasible k-segmentations for case 2 of Theorem 5.

Note. Depicted are the constructed size k interval segmentations. The new k-segmentations are constructed by cross-

ing over (k−1) segmentation and (k+1) segmentation at sk−1
i−1 . In the left panel, S ′k is shown; before sk−1

i−1 , it contains

the segments of Sk−1, after sk+1
i+1 , it contains segments of Sk+1. In the right panel, S ′′k is shown; before sk+1

i , it contains

the segments of Sk+1, after sk−1
i , it contains the segments of Sk−1.
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To complete the proof, we now must show that Case 1 and Case 2 are the only cases i.e., if the condition

for Case 1 does not hold, the condition for Case 2 must hold for some i. To see this, imagine Case 1 does not

hold, then sk+1
1 > sk−10 . If then sk+1

2 < sk−11 the proof is complete, so assume sk+1
2 ≥ sk−11 . If then sk+1

3 < sk−12

the proof is complete and so on. Iterating, since sk+1
k+1 = sk−1k−1 the sequence of deductions must terminate at

some i for which Case 2 holds. Thus Case 1 and Case 2 cover all cases, which completes the proof.

�

Appendix C: Transforming a Probit Regression Model into a Valuation Model

In this section we overview how to transform a prediction model for the sales probability into a linear

valuation model. In practice we cannot observe a customer’s valuation for one product directly. Instead, we

observe whether the customer will buy the product or not, at the offered price p (see Cameron and James

(1987) for more details). Assume that the unobserved continuous dependent variable Y is the customer’s true

valuation or willingness to pay (WTP) for the product. Further, suppose the relation of Y and customer’s

feature X is

Y = β0 +Xβ+ ε, (EC.10)

where ε∼N(0, σ). Customer i’s decision Ii will be

Ii =

{
1, if Yi ≥ pi,
0, otherwise,

(EC.11)

where pi is the price offered to customer i. Then, the probability that customer i with features Xi will buy

the product is

Pr(Ii = 1) = Pr(Yi ≥ p) = Pr(β0 +Xiβ+ εi ≥ p)

= Pr

(
εi
σ
≥ p−Xiβ

σ

)
= 1−Φ

(
p−β0−Xiβ

σ

)
,

where Φ is the cumulative distribution function for the standard normal distribution. Using p and X as

explanatory variables, the probit regression model is then

Pr(I = 1|X) = 1−Φ(β′0 + pβp +Xβ′).

Therefore, we can use the maximum likelihood estimator (MLE) of probit regression model to recover the

regression model of customer’s valuation, i.e.,

β̂0 =
β̂′0

β̂p
, β̂ =

β̂′

β̂p
, σ̂=

1

β̂p
,

where β̂′0, β̂p, β̂′ are the MLE of β′0, βp, β
′. Further, the regression model of customer’s valuation recovered

from probit regression model is asymptotically unbiased if the price variance is large enough.
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Appendix D: Constant Factor Approximation for General Error

In this section we will describe how to obtain a 1-1/e approximation of the optimal FBMSP when the

residuals are independent and follow an arbitrary distribution, as sketched in Remark 1.

(1− 1/e) Approximation Algorithm: Our polynomial time approximation algorithm will follow from

the submodularity of the objective function for FBMSP, defined as follows:

Definition EC.1 (Submodularity). A set function f : 2V →R is submodular if for every A,B ⊆ V ,

f(A∩B) + f(A∪B)≤ f(A) + f(B).

An important subclass of submodular functions are those which are monotone, i.e., functions for which

enlarging the choice set cannot cause the function value to decrease.

Definition EC.2 (Monotonicity). A set function f : 2V → R is monotone if for every A ⊆ B ⊆ V ,

f(A)≤ f(B).

We will show that the objective function for FBMSP can be expressed as a set function over prices which

is monotone and submodular. Note that for n customers with predicted valuations {µ(xi)}ni=1 and for error

distribution ε supported on m points, there are at most O(nm) distinct possible valuation realizations.

Further, any optimal price for a segment must correspond to one of these realizations (since if not, raising the

price until it reaches a valuation in the support is strictly revenue improving). Thus the set of potential prices

is a polynomially sized set equivalent to the set of potential realized valuations, and the revenue objective

of FBMSP can be viewed as a set function over a size k subset of that price set.

Specifically, if f is the revenue function of FBMSP on price set A, it takes the form,

f(A) =

n∑
i=1

max
p∈A

pF (p−µ(xi)).

Then expressed as a set function over the prices, optimal FBMSP is the solution to

max
|A|≤k

n∑
i=1

max
p∈A

pF (p−µ(xi)).

The monotonicity of the revenue objective is easy to see since, by definition, enlarging the set of possible

prices that can be used for a segment will keep at least the same revenue as for a smaller set of prices. The

submodularity comes from the fact that any customer i facing the prices in price set A∩B will result in less

revenue than when facing the prices in price set A or B, i.e.,

max
p∈A∩B

pF (p−µ(xi))≤min

{
max
p∈A

pF (p−µ(xi)), max
p∈B

pF (p−µ(xi))

}
,

further,

max
p∈A∪B

pF (p−µ(xi)) = max

{
max
p∈A

pF (p−µ(xi)), max
p∈B

pF (p−µ(xi))

}
.

Note that

max
p∈A

pF (p−µ(xi)) + max
p∈B

pF (p−µ(xi)) = min

{
max
p∈A

pF (p−µ(xi)), max
p∈B

pF (p−µ(xi))

}
+

max

{
max
p∈A

pF (p−µ(xi)), max
p∈B

pF (p−µ(xi))

}
,
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and thus combining these observations and summing over all customers proves submodularity of the objective

function.

Note that positive monotone submodular functions maximization with cardinality constraints is NP-hard

in general (see Krause and Golovin (2014)). The cardinality constraint in FBMSP is the number of segments

(the same as the number of prices). Nemhauser et al. (1978) shows that a greedy algorithm can obtain an

approximation guarantee of (1−1/e) for class of monotone submodular functions with cardinality constraints.

Since FBMSP problem is can be written as a problem of maximizing a monotone submodular function with

cardinality constraints, it can be approximated at least within a factor of (1− 1/e) via the same greedy

algorithm.

Appendix E: Omitted Figures

Figure EC.5 Prediction of the probit regression model.

Note. Depicted is the output of a probit regression model to predict the probably of mortgage acceptance, our proxy

for purchase in the loan setting. The model is trained using features in Table 2.

References

Aouad, Ali, Adam N Elmachtoub, Kris J Ferreira, Ryan McNellis. 2019. Market segmentation trees. arXiv

preprint arXiv:1906.01174 .

Assael, Henry, A Marvin Roscoe Jr. 1976. Approaches to market segmentation analysis. Journal of Marketing

40(4) 67–76.

Athey, Susan, Guido Imbens. 2016. Recursive partitioning for heterogeneous causal effects. Proceedings of

the National Academy of Sciences 113(27) 7353–7360.

Bagnoli, Mark, Ted Bergstrom. 2005. Log-concave probability and its applications. Economic theory 26(2)

445–469.

Bergemann, Dirk, Benjamin Brooks, Stephen Morris. 2015. The limits of price discrimination. The American

Economic Review 105(3) 921–957.



e-companion to Cui, Hamilton: Optimal Feature-Based Market Segmentation and Pricing ec13

Figure EC.6 An example of the error distribution F ε, constructed for the proof of Theorem 1.

Note. Depicted is an example of the cCDF F ε constructed to prove the hardness of FBMSP. Note on the x-axis are

the valuation support points, and that the resultant error distribution is a step-function on these supports.

Bertsimas, Dimitris, Jack Dunn, Nishanth Mundru. 2019. Optimal prescriptive trees. INFORMS Journal

on Optimization 1(2) 164–183.

Besbes, Omar, Ilan Lobel. 2015. Intertemporal price discrimination: Structure and computation of optimal

policies. Management Science 61(1) 92–110.

Bholowalia, Purnima, Arvind Kumar. 2014. Ebk-means: A clustering technique based on elbow method and

k-means in wsn. International Journal of Computer Applications 105(9).

Biggs, Max, Wei Sun, Markus Ettl. 2021. Model distillation for revenue optimization: Interpretable person-

alized pricing. International Conference on Machine Learning . PMLR, 946–956.

Buzzacchi, Luigi, Tommaso M Valletti. 2005. Strategic price discrimination in compulsory insurance markets.

The Geneva Risk and Insurance Review 30(1) 71–97.

Cameron, Trudy A, Michelle D James. 1987. Estimating willingness to pay from survey data: an alternative

pre-test-market evaluation procedure. Journal of Marketing Research 24(4) 389–395.

Capinski, Marek, Tomasz Zastawniak. 2003. Mathematics for finance. An Introduction 118–124.

Chen, Fangruo. 2001. Market segmentation, advanced demand information, and supply chain performance.

Manufacturing & Service Operations Management 3(1) 53–67.

Chen, Xi, Zachary Owen, Clark Pixton, David Simchi-Levi. 2015. A statistical learning approach to person-

alization in revenue management. Available at SSRN: https://ssrn.com/abstract=2579462 .

Chen, Yuxin, Sridhar Moorthy, Z John Zhang. 2005. Research note-price discrimination after the purchase:

Rebates as state-dependent discounts. Management Science 51(7) 1131–1140.

Claycamp, Henry J, William F Massy. 1968. A theory of market segmentation. Journal of Marketing Research

5(4) 388–394.



ec14 e-companion to Cui, Hamilton: Optimal Feature-Based Market Segmentation and Pricing

Cohen, Maxime C, Ngai-Hang Zachary Leung, Kiran Panchamgam, Georgia Perakis, Anthony Smith. 2017.

The impact of linear optimization on promotion planning. Operations Research 65(2) 446–468.

Cohen, Maxime C., Ilan Lobel, Renato Paes Leme. 2016. Feature-based dynamic pricing. Available at SSRN:

https://ssrn.com/abstract=2737045 .

Courty, Pascal, Mario Pagliero. 2012. The impact of price discrimination on revenue: Evidence from the

concert industry. Review of Economics and Statistics 94(1) 359–369.

Cowan, Simon. 2016. Welfare-increasing third-degree price discrimination. The RAND Journal of Economics

47(2) 326–340.

Dolgui, Alexandre, Jean-Marie Proth. 2010. Pricing strategies and models. Annual Reviews in Control 34(1)

101–110.
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