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ARTICLE INFO Abstract

Keywords: Capacitated multicommodity fixed-charge network design problems can be used to model long-
service networks term planning for transportation, telecommunications, and other service operations. This paper
polyhedral methods studies a minimum cost constant capacitated multicommodity network design model with integral
integer programming flow requirement, where arcs and routes are selected to meet the demand for different commodities.

Using three-dimensional matching, we show that this problem is NP-complete even when the
constant arc capacity requirement is as small as 2. We propose different classes of inequalities
to strengthen its arc flow formulation. The model and methods developed in this paper can be
extended to the planning in transportation, telecommunication, and other sectors.

1. Introduction

Service network design has long been a fundamental problem in long-term planning for transportation, supply chain,
telecommunications, and other services used to transport material, information, energy, and other resources. These
networks require annual investments of hundreds of billions of dollars. Therefore, significant cost savings can accrue
by optimizing network topological design. In a typical service network design problem, we are given a network with
candidate arcs and a list of pairs of network nodes, each associated with end-to-end service demand. Such a problem
aims to minimize the design cost associated with selecting the network design arcs and the routing cost associated with
sending the commodities on these arcs while ensuring that end-to-end service requirements are met. Motivated by the
fact that each arc in the service network has a finite capacity, we incorporate the arc capacity limit in the service network
design problem. Due to the complex interactions among the design and routing decisions, even the simplest versions of
the service network design problem are hard to solve. The goal of this paper is to develop effective optimization-based
methods to support service network design decisions.

This paper proposes a fixed-charge multicommodity network design problem with a constant arc capacity limit
(NDCL). The problem is formulated as a large-scale integer programming model that generalizes previous constant
capacity fixed-charge network flow problems. In the NDCL problem, we need to decide which arcs should be included
in the design and how to route each commodity on chosen arcs, subject to end-to-end service requirements and the arc
capacity, to minimize the sum of fixed arc costs and commodity routing costs. The NDCL problem is hard to solve
since some special cases of the NDCL problem are well-known as computationally intractable (NP-hard). Further, we
show that the NDCL problem is NP-hard even when all arcs have the same capacity limit of 2.

There has been quite extensive research work devoted to network design problems (see, e.g., Crainic (2000);
Magnanti and Wong (1984); Minoux (1989)). Natu and Shu-Cherng (1997) study the point-to-point connection problem,
which is to find a subset of arcs with minimal total selecting cost connecting a fixed number of source-destination
pairs. Goemans and Williamson (1995) presents a general approximation technique for a large class of graph problems,
including the point-to-point connection problem. A generalization of the point-to-point connection problem is the Steiner
forest problem, which is to find the cheapest subgraph to connect the given terminal pairs. Gassner (2010) discuss the
Steiner forest problem and show that the Steiner forest problem is strong NP-hard on graphs with treewidth 3. Gupta and
Kumar (2015) analyze the greedy algorithm for the Steiner forest problem and use it to give new, simpler constructions
of cost-sharing schemes for the Steiner forest. Hubert Chan et al. (2018) achieve a (randomized) polynomial-time
approximation scheme (PTAS) for the Steiner forest problem in doubling metrics. Other approximations for Buy-at-
bulk network design literature consider the node weighted or online version (see, e.g., Chekuri et al. (2007, 2010);
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Chakrabarty et al. (2018)).

Another special case of the NDCL problem is the buy-at-bulk problem, in which the routing costs are included.
Salman et al. (1997) presents an approximation algorithm for minimum cost network design that routes all the demands
at the sources to a single sink. Gupta et al. (2003) give a simple constant-factor approximation algorithm for the
single-sink buy-at-bulk network design problem. Andrews (2004) analyze the hardness of approximation algorithm for
the non-uniform buy-at-bulk network design problem. Charikar and Karagiozova (2005) study the multicommodity
buy-at-bulk network design problem in which we seek to design a network that satisfies the demands between terminals
from a given set of source-sink pairs. Antonakopoulos (2011) develop two approximation algorithms for directed
buy-at-bulk network design in the non-uniform cost model. Antonakopoulos et al. (2011) consider approximation
algorithms for buy-at-bulk network design, with the additional constraint that demand pairs be protected against a single
edge or node failure in the network.

The most related to the NDCL problem is the Multicommodity Capacitated Fixed-Charge Network Design, where
the difference is that the routing variables are continuous. Atamturk (2002) provides an analysis of capacitated network
design cut—set polyhedra. Costa et al. (2009) compare three sets of inequalities: Benders, metric, and cutset inequalities,
which have been widely used in solving multicommodity capacitated network design problems. Frangioni and Gendron
(2009) study 0-1 reformulations of the multicommodity capacitated network design problem, which is usually modeled
with general integer variables to represent design decisions on the number of facilities to install on each arc of the
network. Chouman et al. (2017) improve the mixed-integer programming formulation of the multicommodity capacitated
fixed-charge network design problem by incorporating valid inequalities into a cutting-plane algorithm. Other streams of
the capacitated network design literature utilize dual ascent, Lagrangian relaxation, or local search approaches (see, e.g.,
Herrmann et al. (1996); Holmberg and Yuan (2000); Katayama et al. (2009); Rodriguez-Martin and Salazar-Gonzélez]
(2010)).

The rest of this paper is organized as follows. In Section 2, we define the NDCL problem, formulate it as an integer
programming problem, and show the NP-hardness of the NDCL problem with an arc capacity of 2. In Section 3, we
develop inequalities to strengthen the NDCL model and provide examples to support their effectiveness. Section 4
concludes the paper.

2. Model and Hardness

2.1. Problem Definition

The NDCL problem is defined over a given directed graph G = (N, A), where nodes i € N representing origins,
destinations, or transshipment points for traffic, and arcs a € A representing available interconnections we can select.
K denotes the set of all commodities. An ordered pair (s,,f;) € N X N is called a demand pair; furthermore, s, and ¢,
are the origin and destination of commodity k£ € K. We normalize the demand for each commodity to one unit and
require transporting it on a single origin-to-destination route.

Let i(a) and j(a) denote the tail node and head node of arc a, respectively. The set of outgoing arcs from node i is
definedas A*(i) = {a € A : i(a) = i} and the set of incoming arcs into node j is definedas A=(j) = {a € A : j(a) = j}.
The two non-negative cost coefficients f,, and c, for every arc a € A represent the installation cost and routing cost,
respectively. In the telecommunication context, installing a link with a certain technology (e.g., fiber optic, cellular)
incurs the fixed cost f,,. The routing costs represent operational costs. In reality, we can only route a finite number of
commodities over an arc. This paper assumes the arc capacity limit L is fixed and uniform for each arc in the network.

The NDCL problem aims to minimize the total arc fixed costs and routing costs by selecting arcs of the given
network and routing each commodity on a feasible route based on the selected arcs. To model this problem, we introduce
two sets of binary variables, the design and routing decisions, respectively. The design variables z,, for all arcs a € A,
represent the choice of arcs to be included in the network design solution. z, is one if arc a is selected, and zero
otherwise. The routing variable x’;, for arc a € A and commodity k € K, denotes the commodity routing decisions; x’;
equals one if commodity k is routed on arc a, and zero otherwise. Using the above variables, the NDCL problem can
be formulated as Model NDCL:

mianaza+ an(Z x’;) ()

acA acA keK
S.t.
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-1 ifi= Sk
xE— D xk=21 ifi=d;, VkEK, @
a€A=() a€A* (i) 0  otherwise,
Z x]; <Lz, Va€EA, 3)
kekK
xke€{0,1},Vae A, Vk e K, 4)
z, €{0,1},Va € A. 5)

The objective function Eq. [1] consists of the total fixed cost for selecting arcs on the given network and the total routing
cost incurred by the commodities over all the arcs. The flow conservation constraints Eq. [2] ensure that the arc routing
variables define an origin to destination route for each commodity. Constraints Eq. [3] link the design and arc routing
variables by specifying that we can route at most L commodities arc a if it’s selected in the network design. In many
applications, especially in transportation, the flow of a commodity is restricted to run through a single path in the
network. Similarly, the status of the arc in the network is also often binary, either in use or not in use. Therefore, we
require both the design and flow variables to be binary. We explore the case where the arc capacity is two, and show
that the NDCL problem is NP-complete even in this simple setting.

2.2. Computational Hardness

We first introduce the well-known 3-dimensional matching problem (e.g., Karp (1972); Korte and Vygen (2007)),
which will be used in the following reduction. Let X, Y, and Z be finite, disjoint sets, and let T" be a subset of X XY X Z.
That is, T' consists of triples (x, y, z) suchthat x € X,y € Y, and z € Z. Now M C T is a 3-dimensional matching if
the following holds: for any two distinct triples (x, y, z;) € M and (x,, y5,z,) € M, we have x1 # x2, y1 # y2, and
z1 # z2.

X Y Z X Y zZ
0 0
1 1
2 2 ® 2 Y
3 3 3
(a) Input. (b) Feasible solution. (c) Optimal solution.

Figure 1: An instance of 3-dimensional matchings.

Given an instance of 3-dimensional matching, we construct a corresponding instance of the NDCL problem with an
arc capacity limit of two. For every triple (x;, y;, z;) in the original 3-dimensional matching problem, we construct a
simple path (x;, y;, z, w;), where w; € w is the endpoint of the simple path. As shown in Fig 2, we need to construct a
new arc between sets Z and W for each triple. Note that each w; € W corresponds to an x; € X; thus, |W| = | X]|.
Assume now we have a set of real commodities R; whose origin and destination pairs are (x;, w;), i = 1,...,|X]|.
Assume we also have two sets of dummy commodities 77 and 75, where |T}| = |Y|, |T;| = | Z|. The origin node of
each dummy commodity in 7 is assigned to be a unique node in Y, the origin node of each dummy commodity in 7,
is assigned to be a unique node in Z, i.e., no two dummy commodities share the same origin. The destination node
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for dummy commodities in 7 is D, the destination node for dummy commodities in T, is D,. We connect all the
nodes in Z with D, and all the nodes in W with D, using zero cost dummy arcs. The number of dummy arcs between
z, and Dy is [|A7(z;)|/ L], the number of dummy arcs between w; and D, is [|A~(w;)|/L]. Assume both the fixed
and all routing costs on arcs between Y and Z are 1, the fixed and routing costs on arcs between Z and W are also 1.
All the other arcs in the graph have zero fixed and routing costs. Since the fixed and routing cost total for routing any
dummy commodity is two anyway, we only count the costs for routing real commodities to simplify the analysis. (The
total cost of routing dummy commodities will remain unchanged when we change the path of the real commodities.)
Assume there is a private path between x; and d; for each real commodity, i = 1, ..., | X|. The fixed cost of using the
private path is 1 and the routing cost on the private path is 1 + ¢, where 0 < € < 1. Here we show that for the optimal

X Y VA w

Dy

Figure 2: An instance of NDCL problem extended from the 3-dimensional matching.

solution of the NDCL problem with an arc capacity limit of 2, either a real commodity goes over a unique triple in
the original 3-dimensional matching problem or through its private path (remains unmatched in the 3-dimensional
matching setting).

Lemma 1. No path of two real commodities will share the same node in Z in the optimal solution.

Proof. Assume the statement is not true. There are paths of two real commodities that will share the same node in
Z in the optimal solution. Since there is one and only one dummy commodity at each node in Z, and every pair of
two real commodities has different destinations, if there are paths of two commodities that share the same node z in
Z, only one of them can go with the dummy commodity. Assume the two commodities are commodity i and j. We
let commodity i go with the dummy commodity since the total cost will be the same no matter which one goes with
the dummy commodity at z. If j goes with a dummy commodity or a real commodity over an arc between Y and Z,
we fixed the paths of other commodities, and move j to its private path, the reduced cost will be at least 3, and the
induced cost is only 2 + €. Since 2 + € < 3, the total cost will decrease if we move commodity j to its private path,
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which contradicts the assumption. Therefore, no two real commodities will share the same node in Z in the optimal
solution. O

Lemma 2. No path of two real commodities will share the same node in Y in the optimal solution.

Proof. By lemma 1, in the optimal solution every pair of real commodities will go to different nodes in Z, so we can
use the same argument in lemma 1, no path of two real commodities will share the same node in Y in the optimal
solution. O

Theorem 1. No path of two real commodities will share the same node in the optimal solution.

Proof. Combine the result of lemma 1 and 2 and the fact every pair of real commodities has a different origin and
destination. We can conclude that no path of two real commodities will share the same node in the optimal solution. [

Therefore, in the optimal solution of the NDCL problem with arc capacity limit of 2 as shown in Fig 2, each
commodity will go over either unique path of the 3-dimensional matching problem or go through its private path. Since
we can attach the fixed cost selecting arcs in the network to dummy commodities, the cost for the dummy commodities
will be constant for any solution of the above designed NDCL problem. We denote the cost for the dummy commodities
as ¢y, where c¢; = 2|Y| + 2| Z]|. So the total cost of the optimal solution will be

c=cy;+2m+ (| X|-mQ2+e)=2(|X|+ Y|+ |Z]) + e(| X| — m),
where m is the number of paths that contain a unique triple in the optimal solution. Minimizing the total cost c is
equivalent to maximize the number of triples for the 3-dimensional matching problem.
Theorem 2. The decision version of the NDCL problem with an arc capacity limit of 2 is NP-complete.

Proof. Note that the 3-dimensional matching problem can be reduced to the NDCL problem with an arc capacity limit
of 2, and the 3-dimensional matching problem is a well-known NP-complete problem. The NDCL problem with an arc
capacity limit of 2 is also NP-complete. O

This proof can be generalized to any fixed arc capacity limit. If the arc capacity limit L > 2, the NDCL problem is
NP-hard even if the arc capacity limit is fixed and uniform over the given network topology, i.e.,

Theorem 3. The decision version of the NDCL problem with arc capacity limit of L(L > 2) is NP-complete.

3. Strengthening the NDCL Model

In this section, we present different classes of inequalities to strengthen the formulation [NDCL]. We also give
some examples to illustrate how the inequalities eliminate some fractional solutions of [NDCL-LP] and strictly raise
the optimal LP value.

3.1. Strong Inequalities for Single Arc Design Relaxation
Now we consider the unsplittable flow arc set on every single arc. Follow the notations in Atamturk and Rajan
(2002), the feasible unsplittable flow arc set over an arc can be represented as

F, = { (x5) ek - Zdl 2 K<Lz, xke{0,1}keK, z, € {0,1}}. (6)
keK
The convex hull of solutions in F, is defined as
conv(F,) = { () ek - Zal D, ¥ < Lz xk €10,11,k € K, 2, €0, 1]}. )
kek

The resulting relaxation decomposes by arc, it’s also called single-arc design relaxation in Magnanti et al. (1993). Then,
the following strong inequalities (SI) are valid for conv(F,) and will cut off some fractional solutions,

X<z, VkeKk. ®)
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It can be verified that the strong inequalities are facet-defining for conv(F),), see Atamturk and Rajan (2002).
Proposition 1. The strong inequalities S are facet-defining inequalities of conv(F),).

Adding all the SIs for all the arcs to [NDCL-LP] will significantly improve the lower bound. However, the number
of SIis |A||K]|. It yields an extremely large model if we add all of the SI to the LP relaxation. That will frequently
exhibit degeneracy with a high computational cost. In fact, only a small number of SI is necessary and will yield
efficient result. In our cutting plane algorithm, only the most violated SI is added to the LP relaxation for each run.

3.2. Cover inequality

Let S C N be anon-empty subset of N, and S = N\.S be its complement, the corresponding cut-set is defined as
(S,S) = {a € Ali(a) € S, j(a) € S}. We denote the associated commodity subset as K(S, S) = {k € K|s;, € S,t; €
S'}. Further, we use d s.5 = |K(S, S)| to denote the total demand that must flow from S to S. There should be enough
capacity on the arcs of the cut-set (.5, .5) to satisfy the total demand requirement, we can obtain the Single-Cut-Set
Relaxation, which is

Y Lz, >dgs. ©)

ag(s.,S)

Using the integrity of z, for all ain(.S, S), we can derive the Cover Inequality

Y oz,> [ds—s] (10)

ae(s,S)

Proposition 2. The Cover Inequality 10 is valid and tightens formulation 1.

Example for Cover inequality. The example in Figure 3 and 4b show the effectiveness of the Cover Inequality.
In this example, there are three commodities &, k,, and k5. All the three commodities have the same origin s with
respective destinations dy, d,, and d. The fixed arc cost for arcs (s, 1), (s, 2), and (s, 3) is 1, the routing cost is 0. The
fixed arc and routing costs are 0 for other arcs (not shown in the Figure 3a), and the capacity limit we consider is L = 2.
Figure 3b and 3c illustrate the optimal LP solution. Consider the partition as .S = {s}, S = {1,2,3,d,,d,, ds}, the
corresponding cut-set is (.S, S') = {(s,1),(s,2),(s,3)}. The demand from S to .S is |ds 5| = 3. We then get the Cover
Inequality z | + z;5 + 2,3 > [3/2] = 2, which is violated by the LP solution in 3. Adding this Cover inequality, we
will get the optimal integer solution. Note that the Cover Inequality is especially useful for the set cover type problems.

(fixed cost, routlng cost)

@ '@05*' o ;'@?j‘””j
(10) 05 \0.5/
0‘@ @——-os—-@ @ @«:3;:;@ @

(1,0 0. 5 0 5
NG peTans OO
(a) Network structure. (b) Optimal LP solution (z). (c) Optimal LP solution (x).

Figure 3: Example for Cover Inequality.

3.3. Two-partition flow cover inequality
One generalization of the Cover Inequality is the Flow Cover Inequality. Given a two-partition of the network G,
ie,Sand S, foranya € A, letx, = Y, g x5, dg 5 =|K(S,S)|, ds g = |K(S,S)|. An example of two-partition of
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(a) A two-partition of the network. (b) Partition for the cover inequality.

the network is shown in Figure 4a. By summing the flow conservation Equations 2 for all i € .S and k € K, we obtain

Z Xq — Z xa=d5,§—d5~’5. (11)

ag(s.,S) ae(S.,S)

Since dg ¢ > 0, we can get the single-cut-set flow relaxation by relaxing the equality in Equation 11, SCFg. The
feasible set of SC Fyg is defined as

F(SCFs) = {(xwzu)ae(S,S)U(S,S)lxa <Lz, ), xM— ) x,<dgg,
ag(S,S) ag(S,S)
X424 € {0,1},ae(S,5‘)U(S‘,S)}. (12)
This relaxation reduces the NDCL problem to the single-node fixed-charge flow problem. Padberg et al. (1985) studied

the convex hull of F(SCFyg).
A set C C (S,.S5) is called a flow cover if A = L|C| — dg s 2 0. Moreover, the flow cover C is minimal if 4 < L.

dg s _
Note that in a minimal flow cover, A = [%] L-dgg. Given a flow cover C C (S, 5), the flow cover inequality is
defined as
Y [xetol=z)] = Y min{x,.(L-p)z,} <dgs. (13)
ae(S.,S) ae(S,S)

where p = (L — A),. The lifted flow cover inequality is

Z [x,+ (1 =z, - Z min {x,,(L = p)z,} + Z max {0,x, — pz,} < dgs. (14)

ag(s.s) ag(S.s) (S,.5H\C

When applying the flow cover inequalities (13) and (14), many nodes collapsed to one. The internal structure of node
partitions S and S is ignored.

Example for two-partition flow cover inequalities. Consider the network depicted in Figure 6, and assume there
are three commodities, s; = 5, = 0, 53 = 1, d| = d; = d3 = 2. Assume that the arc capacity is 2, with the cover

Titing Cui et al.: Preprint submitted to Elsevier Page 7 of 15



(0, 1) (1,0)

(0, 1) 2

(a) Network structure.
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i~
L

(b) Optimal LP solution (z).

Figure 5: Example for Two-partition flow cover inequality.

Figure 6: Partition for the Two-partition flow cover inequality.

inequalities

Zop+2Z1p+ 232 22,200+ 215+ 203 22,

one of the optimal LP solutions is

1 _ 1 _ .2
X0 = X120 = Xg 10 —x —05
1 _ .2 _ —
Xon = Xgp = Z02 = 0.5,
3
x1’2 = Z],2 = 1,

Z0’3 = Z3’2 = 1

- 0.5 - _
ORI
. —=05---"
\\\\ 2N
\\ \\\ l’ \
Coo0s
\ 051 05
0.5 . !
N A !
~ Ny /
~ |

(c) Optimal LP solution (x).

Let S = {0,1},and C = {(0,2),(1,2)}. Then, dg 5 =3, A = p = 1, the flow cover inequality is

Xia+ (1= z10) + %00 + (1 —295) =3.5>3.

The flow cover inequality is violated in this case. Adding the flow cover inequality

xl,z + (1 _Zl’z) +X0’2 + (1 - 20’2) S 3

will yield the optimal IP solution.
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Figure 7: A three-partition of the network.

3.4. Three-partition flow cover inequality

In addition to the two-partition flow cover inequality, Atamtiirk et al. (2016) proposed a three-partition flow cover
inequality for constant capacity fixed-charge network flow problems. A three-partition of the network is shown in
Figure 7. In the three partition, the nodes are divided into three sets S, S; and .S,. We use (S}, S j) to denote the arc
set, where i(a) € S;, j(a) € S;, and the associated commodities are K(S;,.5;), 0 <i,j < 2.

3.4.1. Three-partition flow cover inequality with two destinations
To be consistent with Atamtiirk et al. (2016), we use S, as the source nodes, S| and S, are the destination nodes.

Without loss of generality, we assume that dg, g =dg s =dg, 5 =dg, 5, =0.
For C; C (S, S7), C; C (S, S,), and Cy, C (5], .55), the set C = C; U C, U Cy, is a three-partition flow cover if

1. /11 =L|C1|_dSO,SI ZO,

2. /12=L|C2UC12|—dS0,52 ZO,

3. A:L|C1UC2|_<dSO,S1+dSO,S2)ZO'
Furthermore, the three-partition flow cover is minimal if

4. Ay <Land A< L.

Given a minimal three-partition flow cover, the three-partition flow cover inequality is defined as

2 z [xa+p,~(1—za)] — z z min{xa,(L—pi)za}+ z Z max{xa—piza,O}
i=1,2 a€(Sy,S)\C;

i=1,2 a€C; i=1,2 a&(S;,Sy)
+ Z (py — p)(1 = 2,) — Z min{xa,(pz—pl)za}+ Z max{O,xa+(p2—p1

aeCyy ae(S1,5)\Cyp ag(S,,S)

—L)Za}s dSOvSl +dSO,S2’ (15)
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where

(L=AL—2+ - 14),)
(Type 1 three-partition flow cover)
((Ag= Dy L= 2y + (A — A)y)
(Type 2 three-partition flow cover)

(p1>02) =

Example for three-partition flow cover inequalities. Consider the network in Figure 8, assume there are three
commodities, s; = 5, = 53 =0,d| =d, = 1, d; = 2. One of the optimal LP solutions is

x| =xé1 =x(2)2=x§1 =0.5,
1 _ .2 _ 3
X0 = X1 = 0.5,x0’2 =1,
ZO,] = 20’2 = 1, ZZ,] =0.5.
It’s easy to check that neither the cover or flow cover inequalities is not violated. Let Sy = {0}, S| = {1}, S, = {2},
C, = {(0, 1}, G, = {(0,2)}, Cy, = 0. Therefore, A} =0, 4, = 1, A = 1. We use the type 2 three-partition flow cover
inequality, which is

X0’1+p1(1 - ZO,I) + x0,2 + p2(1 - 20’2) + max {O, X2’1 + (pz —P1— L)Z2’1} =35> 3,

where (p;, p,) = (0, 1). The type 2 three-partition flow cover inequality is violated by the optimal LP solution. Adding
this three-partition flow cover inequality, we can get the optimal solution.

Proposition 3. The three-partition flow cover inequality with two destinations is valid for the NDCL problem, and
strengthens formulation 1.

The proof of this proposition is the same as in Atamtiirk et al. (2016).

(ﬂ) 05 ;
\05_
e /
/
/
(1, 0) ‘ 0.5 /
Vi
- % /0.5

s/ -
/s / -~

(a) Network structure. (b) Optimal LP solution (z). (c) Optimal LP solution (x).

Figure 8: Example for Three-partition flow cover inequality.

3.4.2. Three-partition flow cover inequality with two sources

Symmetrically, we can have three-partition flow cover inequality with two sources by using .S| and .S, as source
nodes, S as destination nodes. For C; C (S}, ), C; C (5,, 8y), and Cy; C (5,,5)),theset C =C,UC,UC,isa
three-partition flow cover if

1. A] = L|C1| _dSI’SO ZO,

2. /12=L|C2UC21|—dSZSO_O

3. /1 = L|C1 UC2| - (dSI!SO +dS2,S0) Z 0
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(a) Partition for Three-partition flow

cover inequality. (b) Original network structure. (c) Extended network structure.

Figure 9: Example for three-partition flow cover inequality on extended network.

Furthermore, the three-partition flow cover is minimal if

4. Ay<Land A< L.

Given a three-partition flow cover, the three-partition flow cover inequality with two sources is defined as

D arnt=zl = Y min{xa,(L—pi)za}+ > max{xa—piza,O}

i=1,2 aeC; i=1,2 a&(8).S;) i=1,2 a&(S,.8)\C;

+ Z(pz—pl)(l—za)— 2 min{xa,(pz—pl)za}+ 2 max{O,xa+(p2—p1

a€Cy a€(82,S)\Cy a&(S1,5)
- L)z, }S ds, s, T ds, s, (16)
where
(L-=AL-4+A—4),)
(Type 3 three-partition flow cover)
(Pl, Pz) =

((Ag =Dy L= Ay + (Ay— A),)
(Type 4 three-partition flow cover)

Proposition 4. The three-partition flow cover inequality with two destinations is valid for the NDCL problem, and
strengthens formulation 1.

Now we look at another example depicted in Figure 9b. Assume three are three commodities, where s; = 5, = 0,
d; =dy =1, s3 =1, d; =2. The optimal LP solution is

_ _ — 2
Xop =Xy =Xgp) =X, = 0.5,
=x2 =z5,=05
0,1 0,1 0,1 >
Z1g=2Zop =2y =1,

3 _ .3 _
xl,o_xo,z_l'
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It can be checked that no cover inequality is violated. However, if we extend the graph to the network in 9c, and reset
s3 = 3. The optimal LP solution will be xg L= z*; = 1, all the others are the same. Let S, = {0,3}, S; = {1}, and
S, = {2}, C; = {(0, D}, C;, = {(0,2)}, C,, = @. Then 4,0, 4, = 1, A = 1. The type 2 three-partition flow cover

inequality will be

X0,1 + pl(l - ZO,I) + X0,2 + pz(l - 20’2) — min {Xl’o, (L - p])zl,()} + max {0, X3,1 - p1Z3’1}
—max {O, Xy +(pp—p — L)zzyl} =35>3.

The optimal LP solution violates the type 2 three-partition flow cover inequality. This example shows that it’s better
to separate the source and destination node by augmenting the network when we aggregate the commodities. This
example also implies that when our assumption dg, s = dg, s, =ds, 5, = ds, 5, = 0 is not satisfied, how could we
deal with it.

3.5. Incompatible r-arc-commodity Inequalities

The integer flow requirement makes the multicommodity network design problem much more difficult to solve to
optimality. In general, linear multicommodity flow problems can have fractional flows, even if all data is integral. As
shown in Figure 10, the optimal solution for the relaxed LP problem will be xih g = 1/3,i=1,...,4, the total cost is

2
. . . 1 ’dl S25d2 . . . . .
above are satisfied for the optimal LP solution. To cut off the fractional solution here, we introduce the incompatible

r-arc-commodity inequalities.

Like the incompatible r-arc inequalities in Balakrishnan et al. (2017), we observe that when we choose exactly one
arc for each commodity, say a,, not all of them are compatible. Assume at most » — 1 of them are compatible, we will
have the incompatible r-arc-commodity Inequalities,

le;k <r-1. (17

keK

4/3. One optimal integer solution could be x; =1,x = 1, the total cost is 2. Clearly, all the inequalities listed

This observation implies that, given arc-commodity pairs, we need to find the maximum of compatible ones. The
maximum can be found by the following optimization problem,

k
max Z Xak

keK
s.t.
-1 ifi= Sk

Z x’;— Z x§= 1 ifi=d,,
acA=() acAr (D) 0  otherwise,
z x’; <Lz, Va€EA,
keK
xk €[0,1],Va € A,Vk € K,
z, €10,1],Va € A. (18)

Let r,, be the maximum of compatible arc-commodity pairs, it may not be an integer. Since all x’;k are integers, we can
reformulate the inequality as

2 xla‘k <lrnd- (19)

keK

Proposition 5. The incompatible r-arc-commodity inequality /9 is valid for the NDCL problem and can strength
formulation [NDCL)].

For the example in Fig 10, if we choose arc (s, k) for commodity k, we observe that at most two of them are
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(c) Optimal LP solution (x).

Figure 10: Example for r-arc-commodity inequality.

compatible. Actually, solving the maximization, we get r,, = 8/3. The corresponding r-arc-commodity inequality is

1 2 3

+ (8],
X1 tXg .t X3 +X0 4 < [gJ =2

. . . . 1 2 3 4 . . .
Adding r-arc-commodity inequality X + X2 + X53 + X < 2, we can get the optimal integer solution.
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4. Conclusions

In this paper, we study the constant capacity multicommodity fixed-charge network design problems. Using
polynomial time reduction and the NP-completeness of the three-dimensional matching, we show that the constant
capacity multicommodity fixed-charge network design problem is NP-complete even if the arc capacity is uniform
over the network and as small as 2. We have developed some inequalities to strengthen the LP relaxation as well as a
cut-set generation algorithm based on metaheuristics principles. The constant capacity multicommodity fixed-charge
network design problem is closely related to the transportation problem, especially the platooning problem with length
constraint. It would be interesting to investigate how to apply the cutting plane algorithm in designing an efficient
platooning system for heavy-duty trucks.
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