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Online dating is the most common way for new couples to meet, with three-in-ten Americans having used

dating apps, and revenues from dating apps swelling to more than five billion annually. The majority of

these dating apps earn revenue via subscription based pricing, where subscriptions for access to the app are

sold at a fixed price. Subscription based pricing is a ubiquitous way to monetize mobile apps, however in

the context of online dating is controversial as it potentially misaligns the incentives of the platform and

its users. Another, less popular but more traditional monetization strategy is the contract based model, in

which the dating app is contracted by the user to facilitate a search for a partner at some agreed upon one

time price. The purpose of this work is to understand the profit and welfare trade-offs associated with either

pricing strategy for online dating platforms.

We present a natural and novel model for the operation of an online dating platform. In our model, we

show that subscription pricing always achieves at least 36.7% of the profit earned by contract pricing for all

market parameters. We then take a fine-grained approach and establish profit dominance relations between

the two strategies when the marginal cost of operation is small or large, respectively. We show that in

online settings contract pricing is guaranteed to yield higher profit. Further, under a natural slow matching

condition, we show that in online settings profit maximizing contract pricing leads to a higher percentage

of the user-base getting matched. Finally, we show that contract pricing allows the platform to incorporate

user preference information in a way that aligns the interest of the platform and user, solving the potential

incentive issues that plague subscription pricing. Overall, our results explain the prevalence of subscription

based pricing in practice, but suggest that when implementable both the platform and the user-base may

benefit from a switch to contract pricing.
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1. Introduction

An increasing share of people, especially young people, are meeting and falling in love

online. Over the past two decades, the internet has displaced conventional mediums such as

family, school, or the workplace, to become the most common way for new couples to meet

(Shashkevich 2019). As of 2019, three-in-ten U.S. adults say they have used a dating site or

app before, and that percentage rises to 48% for 18-to-29 year-olds (Pew Research Center

2020b). Further, dating apps have been enormously successful in connecting people left

out of traditional dating culture. A full two-thirds of lesbian, gay, or bisexual Americans

report using dating apps (Pew Research Center 2020a) and, with the COVID-19 pandemic

severely restricting the venues in which people can meet, many leading dating apps are

reporting record numbers of users and subscribers (Meisenzahl 2020).

The companies that run these apps have in turn grown with the increased demand. The

dating services industry has swelled over the last five years, with an annualized growth rate

of 12.9% (IBISWorld 2021), and revenues projected to rise 9.3% in 2021 to $5.3 billion as

mobile services expand. In the United States, dating services are largely consolidated under

one corporate entity, the Match Group, which as of 2020, is estimated to have cornered

60% of the dating app market with its suite of apps, including Tinder, Hinge, OkCupid,

and Match (Meisenzahl 2020).

The majority of dating apps in the United States, including all apps owned by the Match

Group, primarily follow a subscription based revenue model where users pay a subscrip-

tion fee per period to use the platform1 (e.g. month, see Fig. 1). While subscription based

revenue models are an extremely common way to monetize apps, their use for dating plat-

forms specifically is questionable. In the subscription model, the matchmaker’s interest

inherently conflicts with users’. As (Wu et al. 2019) note, a profit-maximizing subscription

based dating app will strive to retain all of its subscribers, however upon finding a com-

patible partner, users will terminate their subscription and leave the platform. Thus, the

platform has an incentive not to provide the best potential matches to their users. Framed

another way, if the subscription based platform could divine a user’s perfect match, they

would have a financial incentive to never reveal that match to the user. Of course, the

1 Many of these apps have a paid and free version of the platform, where the unpaid version of site has reduced search
features and requires users to see advertisements. In the free version of the site, the subscription price the user pays
is equivalently the value of the advertisement displayed.
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Figure 1 Examples of subscription and contract pricing in online dating platforms.

Note. Depicted are pricing descriptions for two online dating platforms. On the left is an example of subscription

price at https://www.zoosk.com/. On the right is an example of contract pricing at https://www.selectivesearch.

com/pricing.

subscription based model is not the only way to monetize the services of a dating app.

Another, less popular but more traditional monetization strategy is the contract based

model, in which the dating app is contracted by the user to facilitate a search for a partner

at some agreed upon price. Traditional (offline) matchmakers in India and China typi-

cally use some forms of contract prices (Larmer 2013). In the context of online dating,

some high-end matchmaking sites, such as selectivesearch.com, have already adopted

the contract based model. In the pricing section of the selective service site2 they state

“While most dating apps and services are incentivized to keep members paying ongoing

fees, Selective Search works with clients through a defined contract. Each contract is for

a finite number of introductions over a defined period of time.”. Ostensibly, the contract

based model can align the interests of matchmakers and users. In Fig. 1 examples of both

subscription priced and contract priced dating apps are shown for reference.

In light of the above, in this work we study the operations of a dating platform run by

a profit maximizing monopolist engaged in one of two pricing strategies: (i) subscription

pricing (SP), where the matchmaker commits to a fixed price p, and users pay the price in

a continuous fashion until they leave the platform, and (ii) contract pricing (CP), where

the matchmaker commits to a fixed, one time price p. (SP) is very flexible, and requires

no commitment between the platform and user making it easy to implement, understand,

and deploy, even if it leads to confusing incentives. (CP) is less flexible, especially in

2 https://www.selectivesearch.com/pricing

https://www.zoosk.com/
https://www.selectivesearch.com/pricing
https://www.selectivesearch.com/pricing
selectivesearch.com
https://www.selectivesearch.com/pricing
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the online setting where it requires a large upfront payment, and specific mechanics to

enforce that the contracts are carried out in good faith. To illustrate the point, suppose the

contract requires the user to pay the price upfront, then without some sort of regulation

or commitment mechanism the platform extracts full profit from the user at the outset

and thus has no incentive to work on their behalf. If the contract requires the user to pay

only after meeting their match, then the matchmaker has the difficult problem of enforcing

payment at the end of the user’s time on the platform.

Given the advantages and disadvantages of both (SP) and (CP) for online dating plat-

forms, the purpose of this work will be to understand the profit and welfare trade-offs

associated with each. A summary of our key contributions and findings is as follows:

1. We give a novel, natural model to describe the operations of an online dating platform.

In our model, we characterize the optimal profit a matchmaker can obtain under two

important pricing paradigms, subscription pricing and contract pricing. We then study

the relative profits which can be achieved, and prove tight bounds on the profit ratio

of (SP) to (CP). Specifically, we show (SP) always achieves at least 1/e of the profit

earned by (CP) (c.f. Theorem 1), offering a principled justification for the ubiquity of

(SP) in practice. We also identify two counter-intuitive instances when the profit of

subscription pricing or contract pricing dominates the other, namely when costs are

vanishingly small, or sufficiently large (c.f. Theorem 2).

2. We next study the implications of the choice of (SP) or (CP) on the users of the

platform. We look at which pricing strategy, when optimized to maximize profit, leads

to a higher proportion of matches among the user-base. When model parameters

satisfy a natural slow matching condition, we show a sharp relationship between the

optimal subscription price and the optimal contract price (c.f. Lemma 3). Using this

price characterization, when marginal costs are low (as may be assumed in an online

setting) we prove that not only is (SP) less profitable than (CP), but also a smaller

percentage of the user-base is matched under (SP) compared to (CP) (c.f. Theorem 3).

Thus in online settings the use of contract pricing exhibits a win-win for the platform

and the users.

3. Finally, we consider the scenario where the platform can incorporate heterogeneous

potential match information to vary the matching rate. We show under (SP), the

profit maximizing matchmaker offers the users the worst possible potential matches



Cui, Hamilton: Matchmaking 5

to keep them on the platform longer, whereas under (CP), the situation is reversed,

formalizing the intuition of Wu et al. (2019). Moreover, not only does (CP) create

an incentive for the platform to match the user as quickly as possible, the ability to

learn user preferences also induces the platform to offer a lower contract price (c.f.

Theorem 4).

1.1. Literature Review

Our work is related to several streams of literature in economics, computer science, and

operations. Here, we overview some of these streams and connect them to our work.

Platform design in operations management Our work contributes to a deep literature

dealing with aspects of platform design using models from operations management. The

most relevant paper to our work is (Wu et al. 2018), who study competing matchmakers

in a two-period, two-user model with Hotelling valuations. They model dating platforms

as strategically investing in matching technologies, investigating the interaction between

competition, and providing the best service for their users. (Wu et al. 2018) does not

resolve the suitor-matchmaker incentive issues but does argue that via competition and

perfect information about match quality, matchmaking platforms can be induced to act in

the agents’ best interests. (Ellison and Ellison 2009, Ellison and Wolitzky 2012, Dukes and

Liu 2016, Halaburda et al. 2018, Basu et al. 2019) also study online platform incentives

to provide less-than-perfect services. As the US dating market is largely non-competitive

(Gilbert 2019), we instead focus on changing the pricing structure itself to address incentive

issues, and in a significantly more general model.

Pricing strategy in operations management The closest to our paper, in terms of the

framework and style of pricing strategy analysis, is (Ladas et al. 2021). The authors also

consider two business models, pay-per-use selling, and product selling, which roughly cor-

respond to our subscription pricing and contract pricing, respectively. They focus primarily

on an equilibria analysis of the business model choice under duopoly. Their work explores

the scenarios in which the pay-per-use model is more profitable than product selling. Other

analyses of pay-per-use selling and product selling can be seen in (Varian 2000, Sundarara-

jan 2004, Agrawal et al. 2012, Balasubramanian et al. 2015). Analysis of similar business

models can be seen in (Niculescu and Wu 2014). In our work, we analyze the pricing

strategies of profit maximizing monopolists.
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Approximation analysis for online platforms To understand the optimal design of

matching platforms, (Kanoria and Saban 2021) introduces a stylized dynamic fluid model

for the two-sided matching with strategic agents. They find, in unbalanced markets, the

platform should force the short side to initiate contact with potential partners, there-

fore mitigating wasted searching effort. However, they focus on a setting without prices.

(Johari et al. 2019, Immorlica et al. 2021) investigate the information disclosure problem

for online platforms in two-sided matching markets. (Aouad and Saritaç 2020, Aouad and

Saban 2021) shift their interests to optimization for online matching platforms in dynamic

settings.

Matchmaking in other markets Outside of dating/marriage, online matchmaking is

also a fundamental problem for labor markets (Bimpikis et al. 2020, Belavina et al. 2020)

and in the video game industry. (Chen et al. 2021) study the problem of maximizing player

engagement in video games through improved matchmaking. They focus on a stylized

model with different skill levels of players, and where winning or losing influences the

players’ willingness to stay on the platform. (Chen et al. 2017, Huang et al. 2019, Deng

et al. 2021) also investigate how to improve players’ engagement through matching.

1.2. Paper Outline

In Section 2, we introduce our notation and provide preliminary results about (SP) and

(CP). In Section 3, we compare the achievable profit of the two selling strategies. In

Section 4 we study the implications of committing to (SP) or (CP) for the platform user-

base. Finally, in Section 5 we discuss the implications of our work for matchmakers, users,

and regulators, and highlight interesting avenues for future research.

2. Model and Preliminaries

We consider a profit maximizing matchmaker running an online platform for users seeking

permanent partners, which we refer to as a match3. A random user’s valuation for matching

is described by a non-negative random variable V drawn from a distribution F with density

f . We use the notation F (x) := 1− F (x) to denote the survival function. We model the

matching process as a continuous stream of interactions with potential match candidates,

3 In online dating contexts, a match can refer to a candidate partner for the user, or someone who’s shown preliminary
interest but has not met the user. In this work, we will use match to mean the successful formation of a long-term
partnership culminating in a departure from the platform.
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indexed by t, all with homogeneous match rate q, such that, over any period of time ∆ on

the platform, the probability of a user matching is an exponential random variable4 with

rate q, i.e., Pr (Match∈ [t, t+ ∆)) = 1− e−q∆. This formulation is the natural continuous

time model for the operation of swipe apps like Tinder, Hinge, or Bumble, where users can

continuously swipe through platform-prepared candidate matches. We assume users are

time-sensitive and their valuation for matching decays at a constant rate δ ∈ (0,1) as they

spend time on the platform, so user’s valuation for matching after t time on the platform

is Vt = δtV .

On the platform side, we assume the matchmaker commits to some fixed pricing strategy,

either a continuously charged subscription price or a one-time contracted price. In either

case, we assume users are rational, and will pay the price (potentially in a continuous

fashion) if their expected utility from payment is non-negative. The platform prepares

potential matches for the user at marginal operating cost c, paid continuously throughout

the user’s time on the platform. We assume the length of time the user can spend on

the platform is upper bounded by T , which can be thought of as the size of the pool of

potential matches (T may be nearly infinite in a city, or quite restrictive outside of cities),

or as the maximum possible time the user can spend on the platform. When a user reaches

time T on the platform they leave, and we say the platform has been exhausted.

We consider two pricing strategies which we term subscription pricing (SP), where the

user continuously pays a subscription price to participate on the platform, and contract

pricing (CP), where the user and platform enter into a contract in which the user pays a

fixed fee, and in return uses the platform until matched, or the platform is exhausted. We

now formally describe the matchmakers’ pricing strategies. We characterize their profit in

terms of model parameters in Section 2.1.

Subscription Pricing (SP): In subscription pricing, the platform commits to a fixed

price p and each user pays the price in a continuous fashion until they either match,

their expected utility from further time on the platform drops below 0, or the platform is

exhausted. LetRSP (p, c,F ) be the expected profit the matchmaker earns using subscription

price p, then

RSP (p, c,F ) := (p− c)E [Time on platform|(SP)] .

4 For a discrete matching process, if the probability of matching in each period is q, then a user’s time on the platform
is geometrically distributed. The exponential distribution is the continuous analogue of the geometric distribution of
the discrete matching process.
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Let RSP (c,F ) := maxpRSP (p, c,F ) denote the maximum achievable profit under subscrip-

tion pricing.

Contract Pricing (CP): In contract pricing, if the user agrees to a fixed, one-time pay-

ment p, the matchmaker commits to displaying potential matches until the user matches

and leaves, or exhausts the platform. Let RCP (p, c,F ) be the expected profit the match-

maker earns using the contract price p, i.e.,

RCP (p, c,F ) := p− c×E [Time on platform|(CP)] .

Let RCP (c,F ) := maxpRCP (p, c,F ) denote the maximum achievable profit under contract

pricing.

Note, (SP) and (CP) represent two ends of the spectrum of pricing strategies parame-

terized by the time commitment required of the user at payment. In (SP), the user pays a

continuous subscription rate and can immediately stop payment at any time, and thus no

commitment is required on the part of the user or matchmaker. In (CP), a user contracts

with the platform to pay a one-time price for unlimited access to the platform until they

either match or exhaust the candidate pool, requiring full commitment from the user if the

payment is made upfront, or full commitment from the platform if the payment is made

at the end. For the purposes of our model, the timing of the payment via the contract is

irrelevant.

2.1. Preliminaries

In this subsection, we give two expressions for the profits of (SP) and (CP), in terms of the

model primitives. These expressions follow from integral representations for their profit

based on value differentials and time differentials, respectively. We then define conditions

for when the profit maximizing prices are unique for each strategy. Finally, we define a

useful market condition used repeatedly throughout the work.

Profit of Subscription Pricing.

To compute the profit for subscription pricing, first consider a user with fixed valuation v

facing a fixed subscription price p. To derive when a user will pay the continuously charged

subscription price p, fix a discrete period of length ∆. The user will pay p∆ at time t to

use the platform for ∆ more time if p∆≤
∫ ∆

0
vδt+xqe−qxdx, where

∫ ∆

0
vδt+xqe−qxdx is user’s
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expected valuation for getting matched in the period. Dividing through and letting ∆ tend

to 0, the limiting condition is then,

p≤ lim
∆→0

∫ ∆

0
vδt+xqe−qxdx

∆
= vδtq. (1)

Eq. (1) is the stopping criteria for the user. The user will stay on the platform until

they either match and leave, which is distributed as an exponential random variable with

rate q, or until their valuation falls to the point Eq. (1) is not satisfied which occurs at

τ := max{ log( p
vq )

log(δ)
,0}, or until they exhaust the platform at time T . Let XS(v, p) be the

random variable representing the users time on the platform when the subscription price is

p. Note XS(v, p) = min{Exp(q), τ, T}, and the expectation over the exponential matching

randomness is then,

E[XS(v, p)] =

∫ min{τ,T}

0

qte−qtdt+ min{τ,T}e−qmin{τ,T}

=
1− e−qmin{τ,T}(1 + qmin{τ,T})

q
+ min{τ,T}e−qmin{τ,T}

=
1− e−qmin{τ,T}

q
. (2)

Now taking expectation over the valuations, the average users expected time on the plat-

form is then EV∼F [XS(V,p)] and the expected profit for a given subscription price p is,

RSP (p, c,F ) = (p− c)E[Time on platform|(SP)]

=

(
p− c
q

)∫ ∞
p
q

min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}
f(v)dv. (3)

Note Eq. (3) expresses the profit as an integral over the valuations. Next we derive a similar

expression for (CP).

Profit of Contract Pricing.

To compute the profit for contract pricing, again consider a user with fixed valuation

v and note that the user will pay to participate only if their time discounted expected

valuation for a match exceeds the contract price, p. If the user pays, they will stay on the

platform until they either match and leave, which again is distributed as an exponential

random variable with rate q, or until they exhaust the platform at time T . Let XC(q)

be the random variable representing the time the user spends on the platform assuming
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they paid the contract price, then XC(q) = min{Exp(q), T}. A user with valuation v for

matching will pay if vE[δXC(q)1XC(q)<T ]≥ p where 1XC(q)<T is the indicator function which

is 1 when the user matches, and 0 when the user exhausts the platform. The expectation

can then be evaluated as,

E[δXC(q)1XC(q)<T ] = q

∫ T

0

δte−qtdt=
q
(
1− δT e−qT

)
q− log (δ)

.

If a user pays the contract price, the expected operating costs of the platform will be c

times the expected time to users stay on the platform, i.e.,

cE[XC(q)] = c

(∫ T

0

qte−qtdt+Te−qT
)

=
c(1− e−qT )

q
(4)

Now taking expectation over the valuations, the expected profit earned by offering contract

price p is,

RCP (p, c,F ) =

∫ ∞
p(q−log(δ))

q(1−δT e−qT )

(
p− c(1− e

−qT )

q

)
f(v)dv

=

(
p− c(1− e

−qT )

q

)
F

(
p (q− log(δ))

q (1− δT e−qT )

)
(5)

Note Eq. (5) also expresses the profit as an integral over the valuations.

In this work, we will find it convenient to alternatively represent the profit from (SP)

and (CP) as integrals over the time on the platform. In the following lemma, we introduce

equivalent integral formulations of Eq. (3) and Eq. (5). We defer the proofs to the appendix.

Lemma 1 (Integral Formulations of RSP and RCP ). For all positive valued distri-

butions F , parameters c, q, T > 0, and δ ∈ (0,1),

RSP (p, c,F ) =

∫ T

0

(p− c)F (pq−1δ−t)e−qtdt, (6)

RCP (p, c,F ) =

∫ T

0

(
pδt (q− log(δ))

1− δT e−qT
− c
)
F

(
p (q− log(δ))

q (1− δT e−qT )

)
e−qtdt. (7)

We can interpret the integral formulations in Lemma 1 as describing the state of the

platform at each time t. For (SP), F (p/qδ−t)× e−qt is the fraction of the market at time t

that is still not priced out, times the fraction of those users who still have not matched. For

(CP), F
(

p(q−log(δ))
q(1−δT e−qT )

)
× e−qt is similarly the fraction of the market not priced out, times

the fraction of those users who still have not matched at each time t, now paying a time

dependant price.
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While Eqs. (3) and (5) to (7) allow us to express the profit for fixed subscription/contract

prices, in this work our focus is on the profit achieved using the optimal prices. Unfor-

tunately, these profit functions can generally be quite badly behaved with multiple

locally/globally optimal prices. To allow for tractable analysis, we will focus on a natural

class of valuation distributions that simplifies the price optimization of (SP) and (CP).

Specifically, we look at monotone hazard rate distributions (MHR).

Definition 1 (Monotone Hazard Rate (MHR) Distributions). A random

variable V ∼ F with density f is MHR if F (x)
f(x)

is non-increasing.

MHR distributions are commonly used to model valuations, where they strike the appro-

priate balance between structure (MHR distributions have sub-exponential tails) and gen-

erality. MHR includes many common distributions, including Normal, Uniform, Expo-

nential, and more. In Lemma 2 we show that when valuations are MHR, the optimal

subscription/contract prices are unique and further, as c increases the prices increase.

Lemma 2 (Uniqueness of Optimal Prices). For all positive valued, MHR distribu-

tions F , and parameters c, q, T > 0, and δ ∈ (0,1), both the optimal subscription price and

the optimal contract price are unique, and increasing in c.

2.1.1. Slow Matching Condition. Finally, we introduce one condition that will be

helpful when thinking about dating markets. Specifically, in this paper, it will be useful

to focus on markets that do not quickly match users relative to the users’ patience, and

the size of the pool of potential matches. We describe such markets with the following

condition.

Condition 1 ((C1) Slow Matching Condition). When the market parameters q,

δ, and T are such that,(
1− q

log(δ)

) log(δ)
q

≥
(

q

q− log(δ)

)(
1− δT e−qT

1− e−qT

)
,

we say the market satisfies a slow matching condition.

To build intuition for (C1), consider the case when the pool of potential matches is

large, i.e., T =∞. In this case, the condition reduces to q ≤− log(δ). Recall, q is the rate

at which users leave the platform due to matching, and also recall that user’s valuations

decay exponentially in δ. Condition (C1) compares these rates and implies that over any

period t, assuming the market is not exhausted, the rate of user’s valuation decay (and
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thus departures when valuations dip below the price) exceeds the rate of departure due to

successful matching. Thus, we understand (C1) as markets where more users leave due to

lack of patience or market exhaustion than because they match.

According to Pew Research Center (2020b), while three-in-ten Americans have tried

dating apps, less than one-in-ten have found a serious relationship using from them, sug-

gesting that matching is less likely to cause users to leave the platform than other causes

of user churn like loss of patience, or exhausting local options. Thus, we believe (C1) to be

a natural condition in our contexts of interest and likely to hold in practice.

3. Profit Guarantees for (SP) vs. (CP)

This section studies the optimal profits a matchmaker can earn under (SP) and (CP).

Note, neither (SP) nor (CP) always yields more profit for all parameters and valuation

distributions in our setting. Moreover, there are scenarios for which (SP) earns positive

profit whereas (CP) earns nothing when the costs are prohibitively high (see Fig. 3 for

example when valuations are exponentially distributed). Further, note that the reverse is

not true, there is never an instance where (SP) earns nothing but (CP) earns positive

profit (we prove this fact in Theorem 2(b)). Thus, in order then to understand when each

pricing strategy is desirable for the matchmaker, we will attempt lower bound the ratio of

the optimal profit achievable by (SP) to (CP), RSP (c,F )
RCP (c,F )

.

Specifically, we prove that no matter the market conditions, subscription based pricing

always earns at least 36.7% of the profit of contract pricing, and for almost all parameters,

the guarantee is even stronger.

Theorem 1 (RSP Approximates RCP ). For all positive valued distributions F ,

parameters c, q, T > 0, and δ ∈ (0,1), then:

RSP (c,F )

RCP (c,F )
≥
(

1− q

log(δ)

) log(δ)
q

.

Taking the minimum over q
− log(δ)

yields a constant factor approximation,

RSP (c,F )

RCP (c,F )
≥ 1

e
.

Further, this bound is tight.
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Discussion of Theorem 1 Theorem 1 demonstrates that in all parameter regimes, subscrip-

tion pricing guarantees a substantial fraction of the profit garnered by contract pricing.

This guarantee is of particular interest as contract pricing requires commitments between

the users and the platform, and so is not necessarily implementable in an online setting.

As subscription pricing requires no extraordinary market powers or commitments, it may

be the only available pricing mechanism for the matchmaker, and justifies the prevalence

of subscription based pricing in US online dating markets.

Further, we note that our bound is parametric and often guarantees more than 1/e of

the optimal profit without considering anything about the valuation distribution. In Fig. 2,

we show for fixed valuations how the guaranteed fraction changes with the operating cost

c. For most cases, the fraction is much higher than our lower bound of 1/e. Additionally,

from the proof of the theorem we note that the worst case occurs when user valuations have

no variation, a condition which is quite unlikely (c.f. Example EC.1 for tight examples).

Thus in practice, we expect (SP) to earn an even greater fraction of the profit than the

worst case guarantee in Theorem 1.

3.1. Proof Sketch of Theorem 1

In this subsection we describe the main ideas for the proof of Theorem 1 in the case when

the number of potential candidates is large i.e. T =∞ (for the full proof see Section B.2).

The proof follows in three steps. First, we reduce the problem to the case where user’s

valuations are fixed and deterministic. Then, for fixed valuations V ∼ Fv where Fv is the

distribution of a point mass on v, we consider two feasible subscription prices, neither

of which individually imply the guarantee but together the best of which always guaran-

tee 36.7% of the optimal contract pricing profit. To see where these two feasible prices

come from, consider the ratio RSP (c,Fv)/RCP (c,Fv) as a function of c, and let p∗(c) =

arg maxpRSP (p, c,Fv) be the optimal subscription price of RSP (c,Fv). The derivative of

RSP (c,Fv) in c is,

∂RSP (c,Fv)

∂c
=

1

q

((
∂p∗(c)

∂c
− 1

)(
1−

(
p∗(c)

vq

)− q
log(δ)

)
+

(
p∗(c)− c
vq log(δ)

)(
p∗(c)

vq

)− q
log(δ)

−1
∂p∗(c)

∂c

)

=−1

q

(
1−

(
p∗(c)

vq

)− q
log(δ)

)
,
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where the second equality follows from the optimality condition of p∗(c),

1

q

((
1−

(
p∗(c)

vq

)− q
log(δ)

)
+

(
p∗(c)− c
vq log(δ)

)(
p∗(c)

vq

)− q
log(δ)

−1
)

= 0.

Using this, the derivative of RSP (c,Fv)/RCP (c,Fv) is then,

∂RSP (c,Fv)/RCP (c,Fv)

∂c
=

1
q

(
1−

(
p∗(c)
vq

)− q
log(δ)

)(
p∗(c)
vq
− q

q−log(δ)

)
R2
CP (c,Fv)

(8)

It can be checked that Eq. (8) is always positive when (C1) holds, and thus the worst case

ratio occurs when c= 0. For this case, we analyze the profit of the price that maximizes

(SP) when c = 0, p∗(0), (we compute p∗(0) in Example EC.3) to achieve the guarantee.

When (C1) does not hold, the worst case for the ratio no longer occurs at c= 0. Since by

Lemma 2 p∗(c) is monotonically increasing in c, Eq. (8) is negative and then positive, as

a function of c. The minimum of RSP (c,Fv)/RCP (c,Fv) thus occurs at an intermediate c∗

such that, p∗(c∗)
vq
− q

q−log(δ)
= 0, or equivalently when,

p∗(c∗) = v

(
q2

q− log(δ)

)
.

Analyzing this second feasible price achieves the guarantee when (C1) does not hold,

completing the proof. A graphical representation of the two cases can be seen in Fig. 2.

3.2. Fine-Grained Profit Analysis

In Theorem 1 we prove the profit of (SP) always approximates the profit of (CP). One

interesting consequence of the Theorem 1 is that, when the match rate q is fixed and

users are very patient i.e. δ ≈ 1, then the parameter q
− log(δ)

becomes very large, and the

guarantee tends to 1 implying that when users are patient, subscription pricing achieves

essentially as much profit as contract pricing regardless of cost or valuation distribution. In

fact, when δ = 1, RSP (c,F ) =RCP (c,F ) (see Example EC.2 for full derivation) and thus

Theorem 1 lets us understand the performance of the strategies in markets with less than

perfectly patient users.

In Theorem 2 we look at two other instances where extremal versions of a market

parameter, namely the marginal operating cost c, similarly imply profit relations.

Theorem 2 (Profit Relationships as Cost Varies). For all positive valued, MHR

distributions F , parameters q,T > 0, and δ ∈ (0,1), then:
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a) When c= 0, RCP (0, F )≥RSP (0, F ).

b) When c sufficiently large, RCP (c,F )≤RSP (c,F ).

In Theorem 2 we find that the profit from contract pricing always dominates the profit

of optimal subscription pricing as the marginal cost of operating the platform tends to

zero. This result is somewhat surprising. In online markets one can expect the marginal

cost of operating with one more user to be small, and thus although (SP) is vastly more

common for online dating, Theorem 2(a) suggests that (CP) may be more profitable for

the platform (if they can implement it). On the other hand, when the marginal cost of

operation is high, as might be expected in the case of a traditional matchmaker working

directly with users, we find the reverse is true. The profit of the optimal subscription price

dominates. Thus both (SP) and (CP) are, in some sense, not best suited for the markets

in which they are the dominant paradigm. In the next section continue on this track, and

study the impact of (SP) vs (CP) on users when marginal costs are low.

Figure 2 Bounds on RSP
RCP

.

Note. Here we plot the guarantee in Theorem 1 when valuations are fixed and equal to 1, T =∞ and δ = 0.4 as c

varies. On the left, we let q=− log(d)−0.1 so that (C1) holds. On the right, we let q=− log(δ) +1 so that (C1) does

not hold.

4. Impact and Incentives of Profit maximizing Online Matchmakers

In this section, we look beyond profit and study the structure, social welfare, and specific

incentives induced by each pricing strategy. In Section 4.1 we prove a sharp relation between

the optimal prices under (SP) and (CP) when (C1) holds, and use that relation to study the

proportion of the market that ends up matched when the profit maximizing matchmaker
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chooses (SP) or (CP). In Section 4.2 we relax our assumption that the population of

potential matches are all equally likely to match with the user. In a natural extension, we

show that under (SP) the matchmaker has an incentive to show the user their least likely

matches first, whereas under (CP) the matchmaker has the opposite incentive. Moreover,

we find that under (CP) not only does the matchmaker display the most likely matches

first, but they also do so at a lower price to the user.

4.1. Proportion of the Market Matched

In this subsection, we will examine the consequences profit maximizing sales practices have

for users. First, we study which strategy leads to more of the population being matched.

To help us characterize the percent of the market that matches under (SP) or (CP), we

will first prove a structural condition on the prices.

Lemma 3 (Price Dominance for (SP) and (CP)). For all positive valued, MHR

distributions F , parameters c, q, T > 0, and δ ∈ (0,1) satisfying (C1), then:

a) The optimal subscription price is greater than or equal to the optimal contract price

divided by the expected amount of time a user who pays the contract price spends on

the platform, q−1
(
1− e−qT

)
, i.e.,

arg max
p

RSP (p, c,F )≥
(

q

1− e−qT

)
arg max

p
RCP (p, c,F ).

b) The ratio RSP (c,F )
RCP (c,F )

is increasing, and there exists unique c∗ such that RSP (c∗, F ) =

RCP (c∗, F ).

To build intuition for the condition in Lemma 3(a), consider a user who pays some

contract price pC . From Eq. (4), the expected time they will stay on the platform is

E[XC(v, p)1XC(v,p)≤T ] = 1−e−qT
q

. Thus,
(

q
1−e−qT

)
arg maxpRCP (p, c,F ) is the expected price

per unit of time paid on the platform, and the claim is that under (SP) users pay a higher

price per unit time than users under (CP), in expectation. Lemma 3(a) follows from an

argument similar to the one outlined in the proof sketch of Theorem 1, and Lemma 3(b) is

an easy consequence of the price dominance in (a), and allows us to get a handle on how

the relative profits change as costs increase.

Armed with this lemma, we will now investigate whether users are better off under

(SP) or (CP). Let MSP (p, c,F ) and MCP (p, c,F ) be the proportion of the market that
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ultimately gets matched under subscription pricing or contract pricing, with price p, respec-

tively. Note, this is the proportion of users who first pay the price, times the probability

of then getting matched eventually. Thus, like the profit, the match proportion can be

expressed as a function of the model parameters. Formally,

MSP (p, c,F ) =

∫ ∞
p
q

min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}

︸ ︷︷ ︸
Prob. of matching for valuation v

f(v)dv, (9)

MCP (p, c,F ) =
(
1− e−qT

)︸ ︷︷ ︸
Prob. of matching

F

(
p (q− log(δ))

q (1− δT e−qT )

)
︸ ︷︷ ︸

Prob. of paying price p

, (10)

Note MSP (p, c,F ) and MCP (p, c,F ) are trivially monotone decreasing in p. Let p∗S =

arg maxpRSP (p, c,F ), p∗C = arg maxpRCP (p, c,F ), and let MSP (c,F ) = MSP (p∗S, c,F ),

MCP (c,F ) =MCP (p∗C , c,F ) denote the proportion of the user-base matched under the

profit maximizing prices. The optimal profit of the two strategies can be written as,

RSP (c,F ) = max
p

(
p− c
q

)∫ ∞
p
q

min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}
f(v)dv

=

(
p∗S − c
q

)
MSP (c,F ),

RCP (c,F ) = max
p

(
p− c(1− e

−qT )

q

)
F

(
p (q− log(δ))

q (1− δT e−qT )

)
=

(
p∗C

1− e−qT
− c

q

)
MCP (c,F ).

As with profit, there is no universal match proportion relation between the two strategies.

When costs are sufficiently high, (CP) is not economically viable and thus matches none

of the market, whereas (SP) stays in and still matches at least some users. However, as

mentioned above, for online dating one can expect the marginal cost of operating a platform

to be relatively small. We will assume this for our next result.

Theorem 3 (MCP Dominates MSP when Costs are Low). For all positive val-

ued, MHR distributions F , and parameters q,T , and δ satisfying (C1), if c is less than c∗5,

then:

MCP (c,F )≥MSP (c,F ).

5 As defined in Lemma 3(b)
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Proof of Theorem 3 By the definition of c∗ in Lemma 3(b), for any c≤ c∗, RSP (c,F )≤

RCP (c,F ). Further, by Lemma 3(a) if p∗S and p∗C are the profit maximizing subscription

and contract price, respectively, then
p∗S−c
q
≥ p∗C

1−e−qT −
c
q
. Therefore, by Eqs. (9) and (10)

MCP (c,F ) =
RCP (c,F )

p∗C
(1−e−qT )

− c
q

≥ qRCP (c,F )

p∗S − c
≥ qRSP (c,F )

p∗S − c
=MSP (c,F ).

�

Theorem 3 gives generic conditions for when (CP) matches a higher proportion of the

market than (SP). Specifically, it requires that the marginal costs be relatively small and

(C1) hold, both of which describe the current operational conditions of online dating

platforms. Moreover, by Lemma 3(b) in these same conditions, the profit the platform

earns from contract pricing exceeds the profit of subscription price. Thus in online dating

markets, (CP) is a rare win-win. More users are matched, and more profit is made than

under (SP). In Fig. 3 we plot the relative profits, induced optimal prices, and match

proportions as the cost varies for market parameters satisfying (C1) and valuations drawn

from an exponential distribution. We note that, in these numerics, c∗ occurs quite far from

0, the prices are close in the sense of Lemma 3(a), and (CP) matches significantly more of

the market, even when c is larger than c∗ suggesting the result in Theorem 3 is relatively

conservative.

Figure 3 Relations between optimal price, profit, and match proportion when valuations are exponential.

Note. Here we plot the profit, optimal prices, and match proportions under (SP) and (CP) when valuations are

drawn from an exponential(100) distribution, and where T =∞, δ = 0.8, q = 0.2, and c varies. In the left panel, we

plot the profits of (SP) and (CP), and the note relative profit ordering switches from RCP >RSP when c ≤ 4, to

RCP >RSP for c > 4. In the middle panel, we plot the optimal contract price and the optimal subscription times a

factor of 1/q, as in Lemma 3. In the right panel, we plot the proportion of the market that gets matched under (SP)

and (CP) and note that MCP dominates MSP for c≤ 17.
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4.2. Incentive Considerations for Online Matchmaking

Previously, we assumed q, the rate at which a user matches on the platform, was fixed

and constant for all potential matches. In this subsection, we will extend our framework

to heterogeneous populations of potential matches, which we model as having varying

match rates. Many dating platforms, including some of the most popular apps like Hinge,

Tinder, Okcupid etc., implement features to segregate high probability and low probability

potential matches (e.g. Hinge roses, Tinder top picks, etc.). It is then clear, users have

preferences over potential match that change the match rate, and platforms are able to

learn these match rates and use them to determine the order in which potential matches

are displayed.

Specifically, we assume there are k possible matching rates {q1, ..., qk}, where q1 ≤

q2 ≤ ... ≤ qk, and the matchmaker can order the potential matches based on matching

rate. The population size of potential matches with rate qi for the user is ti, i = 1, ..., k,

where t1 + ...+ tk = T . Without loss of generality, we assume the user’s belief about the

matching rate on the platform is q =
∑k
i=1 qiti
T

, which is correct in expectation. We use

RSP (p, c,F,{tj, ..., ti},{qj, ..., qi}) andRCP (p, c,F,{tj, ..., ti},{qj, ..., qi}) to denote the profit

of (SP) and (CP), respectively, when potential matches are shown following match rate

order {qj, . . . , qi}. For an example of the revenues under specific orders, see Example EC.4.

In Theorem 4 we characterize how a profit maximizing platform orders potential matches

under (SP) and (CP) respectively, and how this ordering affects the contract price.

Theorem 4 (Strategic Matchmakers). For all positive valued distributions F ,

parameters c, q, T > 0, δ ∈ (0,1), and every k element permutation σ ∈Σk,

a) RCP (c,F,{tk, ..., t1},{qk, ..., q1})≥RCP (c,F,σ ({tk, ..., t1})), σ ({qk, ..., q1})),

b) RSP (c,F,{t1, ..., tk}),{q1, ..., qk})≤RSP (c,F,σ ({t1, ..., tk})), σ ({q1, ..., qk})),

Further, when F is MHR,

c) The optimal contract price is decreasing when the matchmaker can manipulate the

order of potential match candidates, i.e.,

arg max
p

RCP (p, c,F,{tk, ..., t1},{qk, ..., q1})≤ arg max
p

RCP (p, c,F,{T},{q})

On dating apps, as the user interacts with the platform, the platform learns which poten-

tial matches the user would likely prefer. As mentioned in the introduction, ostensibly
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Figure 4

Note. We plot the profit ratio RSP
RCP

and the matching proportion ratio MSP
MCP

when valuations are exponentially

distributed with rate 100, and T = 2. In the left panel, we let c= 10, δ= 0.8, and consider two matching rates, q1 and

q2, q1 < q2, in equal proportion i.e. t1 = t2 = 1. We plot the ratios as the difference in rate q2− q1 increases, holding

the average matching rate q fixed at 1. In the middle panel, again we let c= 10, δ = 0.8, and consider two matching

rates, q1 = .1 and q2 = .9, as the proportions, t1, and t2, t1 + t2 = 2, shift. In the right panel, we let c= 0, t1 = t2 = 1,

q1 = .1 and q2 = .9, as plot the ratios as δ varies.

(SP) incentivizes the platform to hold likely matches back from the user, whereas (CP)

incentivizes the platform to try and match the user as soon as possible. Theorem 4 formal-

izes this intuition and further shows that not only does (CP) incentivize the platform to

use information about user preferences to help the user match, but also that information

induces a profit maximizing platform to lower the contract price. This significantly sim-

plifies the strategic considerations between the user and platform as their incentives are

perfectly aligned.

In Fig. 4, we plot the profit and match ratios of (SP) to (CP) when valuations are

exponentially distributed and T = 2, as other market parameters shift. In the left panel of

Fig. 4, we let c= 10, δ = 0.8, and consider two matching rates, q1 and q2, q1 < q2, in equal

proportion i.e. t1 = t2 = 1. We plot the ratios as the difference in rate q2 − q1 increases,

holding the average matching rate q fixed at 1. We note that as the difference between low

and high probability match candidates increases, the profit from subscription pricing begins

to outstrip contract pricing, at the expense of the proportion of the market that ends up

matched. This suggests that unregulated manipulation on the basis of match probability is

quite profitable to the subscription priced dating platform, but this profit comes directly

at the expense of the user-base. In the middle panel, again let c= 10, δ= 0.8, and consider

two matching rates, q1 = .1 and q2 = .9, as the proportions, t1, and t2, t1 + t2 = 2, shift.

Here we note a similar effect as in the left panel, but emphasize that the difference in

revenue and match proportion are most pronounced when the pool of potential matches
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are primarily low matching rate (as is probably the case in practice). Finally, in the right

panel, we let c= 0, t1 = t2 = 1, q1 = .1 and q2 = .9, as plot the ratios as δ varies. As δ tends

to 1, which can be thought as the patience of the user-base, we note that the profit of

(SP) continues to exceed (CP), but the overall match proportion begins to close between

the strategies. The reason is that the platform engaged in (SP) can prolong users’ stay by

providing low match rate candidates first, causing patient users to pay the subscription

price for a long period before finally reaching the higher probability matches. Thus, while

match proportion may be similar in these instances, overall welfare to the user-base is

much higher under (CP) than under (SP).

5. Conclusions

Our work yields a number of insights for market designers looking to understand and

improve operations for online dating platforms. Our approximation results give a com-

pelling answer to the so called “strategy puzzle” of online dating Wu et al. (2019). Online

matchmakers prefer (SP) because not only is it easier to implement, but also because (SP)

garners provably near optimal revenue for the platform. However, while subscription pric-

ing is practical and profitable as a first approach, the theory in our paper provides strong

motivation for further improving performance by attempting contract pricing in this space.

When marginal costs are low (as is the case online) and matching is a slow and noisy

process, we prove that (CP) is both more profitable for the matchmaker, and more effective

at matching a significant portion of the user-base. Of course, as mentioned in the introduc-

tion, (CP) is more difficult to implement in an online environment than (SP). However we

believe this a difficulty worth surmounting. One potential avenue for implementing (CP)

is by working in collaboration with government agencies that can track marriage records,

and thus enforce contracts where users pay after matching. In fact, given the strong social

value of efficient matchmaking, nationalized dating apps are being tested our overseas in

countries like Japan and Singapore (AKITA 2019, Afp 2010). For such platforms, (CP)

could reasonably be implemented and may yield superior results.

For users, we shed light on the consequences of the pricing strategies dating apps commit

to. We note our model has some limitations that may be mitigated in practice. For instance,

our work describes users looking for their life-long match, however on sites like Tinder or

Grindr, many users may only be looking for short relationships. In this case, the incentives
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for the site are different, and even under (SP) the platform may still try to match users

in the hopes of soliciting their repeat business. This heterogeneous population of user

interests may provide some salve to the analysis presented in this paper, and would be

interesting to study in future work. We also note that our paper studies two extremes in

terms of the commitment required of the user at payment. Many apps offer intermediate

length subscriptions, where users can pay for a moderate amount of time on the site (e.g.

six months or a year). In future work, it would be interesting to study how the incentives

and performance of dating apps change as the commitment required from the user varies

between (SP) and (CP).
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Appendix A: Omitted Examples

Example EC.1 (Tightness of Theorem 1). In this example, we give an instance of our model such

that Theorem 1 is tight. Specifically, suppose valuations are fixed and drawn from a point-mass distribution

on v, let c = 0, T =∞, and let q and δ be arbitrary. In this case the optimal subscription price is p∗ =

vq
(

log(δ)−q
log(δ)

) log(δ)
q

, and the profit of optimal subscription pricing is,

RSP (0, Fv) =

(
vq

q− log(δ)

)(
log(δ)− q

log(δ)

) log(δ)
q

.

Similarly, the profit of optimal contract pricing is,

RCP (0, Fv) =

(
vq

q− log(δ)

)
.

The ratio between RSP (0, Fv) and RCP (0, Fv) is then,

RSP (0, Fv)

RCP (0, Fv)
=

(
1− q

log(δ)

) log(δ)
q

,

therefore, the approximation ratio is tight. �

Example EC.2 (Tightness of Lemma 3). In this example, we give an instance of our model such that

the price dominance in Lemma 3 is tight. Specifically, let δ = 1 and the F, c, q, and T be arbitrary. In this

case the profit of (SP) and (CP) can be written as,

RSP (c,F ) = max
p

∫ T

0

(p− c)F (pq−1)e−qtdt= max
p

(p− c)F (pq−1)

∫ T

0

e−qtdt

RCP (c,F ) = max
p

∫ T

0

(
pq

1− e−qT
− c
)
F

(
p

1− e−qT

)
e−qtdt= max

p

(
pq

1− e−qT
− c
)
F

(
p

1− e−qT

)∫ T

0

e−qtdt

Let p∗S = arg maxpRSP (p, c,F ), p∗C = arg maxpRCP (p, c,F ), then (1− e−qT )p∗S = qp∗C , and RSP (c,F ) =

RCP (c,F ). �

Example EC.3 (Tightness of Theorem 3). In this example we describe the simple case where users

have fixed valuation v = 1, there are no costs c= 0, and the pool of potential matches is large T =∞. For

these parameters, the optimal subscription price solves

max
p

p

q

(
1−

(
p

q

)−q/ log(d))
,

which yields the optimal subscription price

p∗S = q

(
log(d)− q

log(d)

)log(d)/q

.

Under the optimal subscription price, the proportion of the market that gets matched is,

MSP (p∗S, c,F ) =

(
log(d)− q

log(d)

)log(d)/q

.

Similarly, in this case the optimal contract price is

p∗C =
q

q− log(d)
,

the corresponding matching proportion MCP (c,F ) is always 1. Thus the contract price leads to a greater

portion of the market getting matched. �
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Example EC.4 (Manipulation Gap). In this example, we consider (SP) and (CP) when the platform

has access to two types of potential matches it can display. Suppose valuations are fixed and drawn from a

point-mass distribution on v, let c= 0, T =∞, δ = 1, and suppose q1 = 0, q2 = 1, and t1 = t2 = 1. Then the

matching rate perceived by users is q = q1+q2
2

= 0.5. The revenue of contract pricing that chooses to show

type 2 potential matches first is,

RCP (0, Fv,{q2, q1}) = v
(
1− e−qT

)
= 1− 1

e
,

The revenue of contract pricing that chooses to show type 2 potential matches first is,

RSP (0, Fv,{q1, q2}) = vq

(
1− e−t1q1

q1
+ e−t1q1

(
1− e−t2q2

q2

))
= 1− 1

2e
.

By Example EC.2, when the match homogeneous the profit of (SP) and (CP) was the same. Now, when the

platform is allowed to choose the order, the difference in profit is,

RSP (0, Fv,{q1, q2})−RCP (0, Fv,{q2, q1}) =
1

2e
.

�

Appendix B: Omitted Proofs

B.1. Omitted Proofs from Section 2

Proof of Lemma 1 First, we derive the expression for (SP). Consider a platform offering subscription p

to a user with fixed valuation v. Recall XS(v, p) is the random variable representing the time the user spends

on the platform. It’s expectation is,

E[XS(v, p)] =

∫ min{τ,T}

0

e−qtdt,

where τ =
log( p

vq )
log(δ)

. The expected revenue over random users with subscription price p is then,

RSP (p, c,F ) =

∫ ∞
p
q

(p− c)
(∫ min{τ,T}

0

e−qtdt

)
f(v)dv

=

∫ T

0

(∫ ∞
p

qδt

(p− c)f(v)dv

)
e−qtdt

=

∫ T

0

(p− c)F (pq−1δ−t)e−qtdt,

where the second equality follows from Fubini’s theorem, for t≤ log( p
vq )

log(δ)
which rearranged is v ≥ p

qδt
. Thus

we obtain our desired expression for (SP).

Now, consider a contract pricing with price p and let v be the minimum valuation for which a user will

pay the contract price. Recall X(v, p) is the random variable representing the time the user spends on the

platform. Then,

p= vE[δX(v,p)1XC(v,p)<T ] =

∫ T

0

vqδte−qtdt=
v (1− δT e−qT )

1− log(δ)

q

. (EC.1)
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The expected revenue earned by contract price p can then be written as,

RCP (p, c,F ) =

(
p− c

(∫ T

0

tqe−qtdt+Te−qT
))

F (v)

=

(∫ T

0

vδtqe−qtdt− c
(
−te−qt|T0 +

∫ T

0

e−qtdt+Te−qT
))

F (v)

=

∫ T

0

(vδtq− c)F (v)e−qtdt

=

∫ T

0

(
pδt (q− log(δ))/(1− δT e−qT )− c

)
F

(
p

(
1− log(δ)

q

)
/
(
1− δT e−qT

))
e−qtdt,

the second equality comes from integration by parts and the final inequality follows from Eq. (EC.1). �

Proof of Lemma 2 First, we consider the optimal subscription price. Using Lemma 1, we can upper bound

the revenue obtained a price p by,

RSP (p, c,F ) =

∫ T

0

(p− c)F
(
pq−1δ−t

)
e−qtdt≤

∫ T

0

(p− c)F (p)e−qtdt,

since F is decreasing. When p tends to infinity, the upper bound on the subscription revenue goes to 0, which

implies the optimal subscription price is finite. Now, we show optimal subscription price is unique. To do so,

first, consider equations of the form

p− c= pg(p) (EC.2)

where g(p) is decreasing, c≥ 0. Eq. (EC.2) has at most one positive solution in p, denote it p∗, since g(p) =

p−c
p
≤ 1 for all c, p≥ 0, and g(p)< g(p∗)≤ 1 for all p > p∗, when g(p) is decreasing. Further, the first-order

derivative of pg(p) is

∂pg(p)

∂p
= g(p)− pg′(p)≤ g(p)< 1

for all p > p∗. If there is another solution p̄ > p∗ of Eq. (EC.2), by the mean value theorem, there exists

p∈ (p∗, p̄), such that

g(p)− pg′(p) = 1,

which contradicts with the fact g(p)− pg′(p) < 1 for all p > p∗. Therefore, we conclude Eq. (EC.2) has at

most one solution for p > 0, c≥ 0, when function g(p) is decreasing in p. Rearrange Eq. (EC.2), we get

p (1− g(p)) = c,

where p (1− g(p)) is increasing in p since g(p) is decreasing in p. Therefore, the solution of Eq. (EC.2) is

increasing in c.

Here, we show the first-order condition for the optimal subscription price is exactly of the form of Eq. (EC.2)

implying uniqueness. Consider

∂RSP (p, c,F )

∂p
=

∫ T

0

F (pq−1δ−t)e−qtdt− (p− c)
∫ T

0

q−1δ−tf(pq−1δ−t)e−qtdt= 0. (EC.3)
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There are two ways the above equation can be zero. The first is if p is such that V ≤ p almost surely. In

this case, both integrals are zero, and while p is a critical point, such a p cannot be the revenue optimal

subscription price as it earns no revenue. Assume F (pq−1)> 0, then both integrals are positive and we can

rearrange the expression Eq. (EC.3) to be

p− c=

∫ T
0
F (pq−1δ−t)e−qtdt∫ T

0
q−1δ−tf(pq−1δ−t)e−qtdt

=

∫ T
0
F (pq−1δ−t)e−qtdt∫ T

0
e−qt

p log(δ)
dF (pq−1δ−t)

=
p log(δ)

∫ T
0
F (pq−1δ−t)e−qtdt

0−F (pq−1) +
∫ T
0
qF (pq−1δ−t)e−qtdt

=
p log(δ)

q−F (pq−1)
(∫ T

0
F (pq−1δ−t)e−qtdt

)−1 ,
where the second follows from the identity dF (pq−1δ−t) = f(pq−1δ−t)pq−1 log(δ)δ−tdt, the third equa-

tion follows from integration by parts, and the fourth from simplifying. Now to apply Eq. (EC.2),

we require the log(δ)

q−F (pq−1)(
∫ T
0
F (pq−1δ−t)e−qtdt)

−1 to be decreasing in p. To show this, let h(p) =

F (pq−1)
(∫ T

0
F (pq−1δ−t)e−qtdt

)−1
, consider the derivative of the h−1(p),

∂
∫ T
0
F (pq−1δ−t)e−qt

(
F (pq−1)

)−1
dt

∂p
=

∫ T

0

−δ−tf(pq−1δ−t)F (pq−1) +F (pq−1δ−t)f(pq−1)

q
(
F (pq−1)

)2 e−qtdt.

To show this derivative is negative, consider

−δ−tf(pq−1δ−t)F (pq−1) +F (pq−1δ−t)f(pq−1)≤−f(pq−1δ−t)F (pq−1) +F (pq−1δ−t)f(pq−1)

= f
(
pq−1

)
f
(
pq−1δ−t

)(
−F (pq−1)

f(pq−1)
+
F (pq−1δ−t)

f(pq−1δ−t)

)
≤ 0

where the first inequality follows from δ−t ≥ 1 and the second inequality from the fact that F is MHR. Then,

h−1(p) is decreasing in p. Consequently log(δ)

q−F (pq−1)(
∫ T
0
F (pq−1δ−t)e−qtdt)

−1 is also decreasing in p. Therefore,

the first-order condition of the optimal subscription price is of the form in Eq. (EC.2). Combining with the

existence of finite optimal subscription price, we conclude that the optimal subscription price is unique and

increasing in c, and the revenue of subscription pricing is unimodal.

The uniqueness of the optimal contract price comes from MHR directly. By Eq. (5), the first-order condition

for the optimal contract price is

F

(
p (q− log(δ))

q (1− δT e−qT )

)
−
(
p− c(1− e−qT )

q

)(
q− log(δ)

q (1− δT e−qT )

)
f

(
p (q− log(δ))

q (1− δT e−qT )

)
= 0. (EC.4)

As above, assuming p is such that F

(
p(q−log(δ))
q(1−δT e−qT )

)
> 0, we can rearrange Eq. (EC.4) to be

p− c(1− e−qT )

q
=

(
q (1− δT e−qT )

q− log(δ)

) F ( p(q−log(δ))
q(1−δT e−qT )

)
f

(
p(q−log(δ))
q(1−δT e−qT )

) .
Note F

(
p(q−log(δ))
q(1−δT e−qT )

)
f

(
p(q−log(δ))
q(1−δT e−qT )

)−1
is non-increasing in p since F is MHR, while p− c(1−e−qT )

q
increas-

ing in p. Therefore, we can conclude the optimal contract price is unique and increasing in c. �
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B.2. Omitted Proofs from Section 3

Proof of Theorem 1 Our proof will follow in three steps. First, we reduce the problem to the case where

valuations are fixed and deterministic. Next, we bound the ratio for fixed valuations when (C1) holds by

analyzing a feasible price, which is the optimal subscription price when c= 0. Finally, we bound the ratio

when (C1) does not hold by analyzing a second feasible price, which is the average price of the contract

pricing.

Step 1: Reduction to fixed valuations.

Define γ(v) := min

{
1−

(
p

qv

) −q
log(δ)

,1− e−qT
}

, and note γ(v) is a non-decreasing function of v. Now, by

Eq. (3) the revenue of (SP) for some fixed price p is,

RSP (p, c,F ) =

(
p− c
q

)∫ ∞
p/q

min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}
f(v)dv

=

(
p− c
q

)∫ ∞
p/q

γ(v)f(v)dv

=

(
p− c
q

)
E[γ(V )1V≥p/q].

By the generalized Markov’s inequality, for any a∈ [p/q,∞), we have,

E[γ(V )1V≥p/q]≥ F (a)γ(a).

Applying the inequality we obtain,

RSP (p, c,F )≥
(
p− c
q

)
min

{
1−

(
p

xq

) −q
log(δ)

,1− e−qT
}
F (x), for any x≥ p

q
. (EC.5)

Now, suppose the optimal price for RCP (p, c,F ) is p∗, and let v∗ = p∗(q−log(δ))
q(1−δT e−qT )

. Taking x as v∗ in Eq. (EC.5)

yields,

RSP (p, c,F )≥
(
p− c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

,1− e−qT
}
F (v∗). (EC.6)

Therefore,

RSP (c,F )

RCP (c,F )
≥ RSP (p, c,F )

RCP (p∗, c,F )

≥
maxp

(
p−c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

,1− e−qT
}
F (v∗)(

v∗

1− log(δ)
q

(1− δT e−qT )− c
q

(1− e−qT )

)
F (v∗)

=

maxp

(
p−c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

,1− e−qT
}

(
v∗

1− log(δ)
q

(1− δT e−qT )− c
q

(1− e−qT )

) (EC.7)

where the first inequality follows from using the optimal price for (CP) and the second inequality follows

by applying Eq. (EC.6) and plugging in the revenue for (CP) from Eq. (5). Define Fv to be the point mass
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distribution for a random variable that is equal to some constant v with probability one. Note, then that

the ratio in Eq. (EC.7) is exactly the same as the ratio for Fv∗ , i.e.:

maxp

(
p−c
q

)
min

{
1−

(
p

v∗q

) −q
log(δ)

,1− e−qT
}

(
v∗

1− log(δ)
q

(1− δT e−qT )− c
q

(1− e−qT )

) =
RSP (c,Fv∗)

RCP (c,Fv∗)
≥ inf

v

RSP (c,Fv)

RCP (c,Fv)
. (EC.8)

For the remainder of our proof, we will lower bound Eq. (EC.8) by finding the worst case ratio over all point

mass valuations v.

Step 2: Bounds when (C1) holds.

Fix some point mass valuation v. First assume, that δT >
(

1− q

log(δ)

) log(δ)
q

, and consider the feasible sub-

scription price be p̃= vqδT . The corresponding subscription revenue is

RSP (p̃, c,Fv) =

(
vδT − c

q

)(
1− e−qT

)
=RCP (c,Fv)

δT (1− e−qT )
q

q−log(δ) (1− δT e−qT )
+
c (1− e−qT )

q

[
δT (1− e−qT )
q

q−log(δ) (1− δT e−qT )
− 1

]
.

Rearranging we have,

RSP (p̃, c,Fv)

RCP (p∗, c,Fv)
=

δT (1− e−qT )
q

q−log(δ) (1− δT e−qT )
+
c (1− e−qT )

q

[
δT (1− e−qT )
q

q−log(δ) (1− δT e−qT )
− 1

]

≥
(

1− q

log(δ)

) log(δ)
q

(
(1− e−qT )

q

q−log(δ) (1− δT e−qT )

)

+
c (1− e−qT )

q

[(
1− q

log(δ)

) log(δ)
q

(
(1− e−qT )

q

q−log(δ) (1− δT e−qT )

)
− 1

]

≥ 1 +
c (1− e−qT )

q
[1− 1]≥ 1.

where the first inequality follows from our assumption, and the second inequality follows from rearranging

(C1).

Next consider the alternative assumption, δT ≤
(

1− q

log(δ)

) log(δ)
q

. For this case, consider the feasible sub-

scription price p̃= vq
(

log(δ)−q
log(δ)

) log(δ)
q

. By Eq. (3), the revenue generated by p̃ is,

RSP (p̃, c,Fv) =
vq

q− log (δ)

(
1− q

log(δ)

) log(δ)
q

− c

q− log(δ)

=
RCP (c,Fv)

1− δT e−qT

(
1− q

log(δ)

) log(δ)
q

+
c

q

[(
1− q

log(δ)

) log(δ)
q
(

1− e−qT

1− δT e−qT

)
− q

q− log(δ)

]
.

By (C1), we always have (
1− q

log(δ)

) log(δ)
q
(

1− e−qT

1− δT e−qT

)
− q

q− log(δ)
≥ 0.
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Therefore,

RSP (c,Fv)≥RCP (c,Fv)

(
1− q

log(δ)

) log(δ)
q (

1− δT e−qT
)−1

,

as desired. Finally, letting x = q

− log(δ)
, and minimizing the above expression for 0 < x < 1, we have

minx∈(0,1) (1 +x)
−1
x ≥ 1

e
with the minimum occurring as x tends to 0. Thus in this case RSPRCP

≥ 1
e
.

Step 3: Bounds when (C1) does not hold.

Again fix some point mass valuation v, and now consider the feasible subscription price, p̃ = vq2(1 −
δT e−qT ) ((q− log(δ)) (1− e−qT ))

−1
. By Eq. (3), the revenue generated by p̃ is,

RSP (p̃, c,Fv) =

(
vq (1− δT e−qT )

(q− log(δ)) (1− e−qT )
− c

q

)1−

((
1

1− log(δ)

q

)(
1− δT e−qT

1− e−qT

))− q
log(δ)


=
RCP (c,Fv)

1− e−qT

1−

((
1

1− log(δ)

q

)(
1− δT e−qT

1− e−qT

))− q
log(δ)


Rearranging we have,

RSP (p̃, c,Fv)

RCP (c,Fv)
≥ 1

1− e−qT

1−

((
1

1− log(δ)

q

)(
1− δT e−qT

1− e−qT

))− q
log(δ)


︸ ︷︷ ︸

φ(T )

.

The derivative of φ(T ) with respect to T is,

∂φ(T )

∂T
=

(
qe−qT

(1− e−qT )
2

)(1− q

log(δ)

)(
1− δT

1− δT e−qT

) 1− δT e−qT(
1− log(δ)

q

)
(1− e−qT )

−
q

log(δ)

− 1

 .

When q

− log(δ)
≥ 1, ∂φ(T )

∂T
≥ 0, and thus,

RSP (p̃, c,Fv)

RCP (c,Fv)
≥ lim
T→0

φ(T ) =
1

2
.

When q

− log(δ)
< 1, ∂φ(T )

∂T
< 0. Define T ∗ such that,(

1− q

log(δ)

) log(δ)
q

=

(
q

q− log(δ)

)(
1− δT∗e−qT∗

1− e−qT∗
)
,

in this case, (C1) does not hold only for T < T ∗. Thus to complete the proof we can consider

RSP (p̃, c,Fv)

RCP (c,Fv)
≥ lim
T→T∗

φ(T ) =

(
1− q

log(δ)

) log(δ)
q (

1− δT∗e−qT∗
)−1

.

Combining across all cases and taking the minimum yields the claimed bound. For tightness, consider the

case when c= 0, T =∞, and valuations are a point mass v. In this case the optimal price for (SP) can be

computed as p∗ = vq
(

log(δ)−q
log(δ)

) log(δ)
q

yielding optimal revenue

RSP (0, Fv) =
vq

q− log (δ)

(
1− q

log(δ)

) log(δ)
q

.

Then the ratio between (SP) and (CP) is

RSP (0, Fv)

RCP (0, Fv)
=

(
1− q

log(δ)

) log(δ)
q

matching the guarantee. Taking q

− log(δ)
→ 0 gives the 1/e constant factor. �

Proof of Theorem 2 We will prove the two parts separately.
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Part a)

First note that when c = 0, the optimal contract revenue is

RCP (0, F ) = max
p
pF

(
q− log(δ)

q (1− δT e−qT )
p

)
=
q (1− δT e−qT )

q− log(δ)
p∗F (p∗),

where p∗ is the solution of maxp pF (p). Now, using Lemma 1, we can upper bound RSP (0, F ) as,

RSP (0, F ) = max
p

∫ T

0

pF (pq−1δ−t)e−qtdt

≤
∫ T

0

max
p
pF (pq−1δ−t)e−qtdt

=

∫ T

0

p∗F (p∗)qδte−qtdt

=
q (1− δT e−qT )

q− log(δ)
p∗F (p∗) =RCP (0, F ),

as desired. �

Part b) Without loss of generality, assume f(x)> 0 for all x > 0, and let f(x) = min{f(y) : y ≤ x}. By

definition, f(x) is non-increasing in x. For any MHR distribution F , F (x)

f(x)
is non-increasing, and F (x)

f(x)
is also

non-increasing. Now recall by Eq. (5), the revenue of optimal contract pricing is

RCP (c,F ) = max
p

(
p− c

q

(
1− e−qT

))
F

((
q− log(δ)

q (1− δT e−qT )

)
p

)
.

Let optimal contract price for cost c be p∗(c), by Lemma 2 p∗(c) increases with and is lower bounded by c.

Let p̃(c) = qp∗(c)

(1−e−qT )
, v∗ =

(
q−log(δ)

q(1−δT e−qT )

)
p∗(c), and ṽ = 1

2

(
p∗(c)

1−e−qT + v∗
)

. Using Eq. (3) we can lower bound

the revenue of the optimal subscription pricing by,

RSP (c,F ) = max
p

(
p− c
q

)∫ ∞
p
q

min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}
f(v)dv

≥
(
p̃(c)− c

q

)∫ ∞
p̃(c)
q

min

{
1−

(
p̃(c)

vq

) −q
log(δ)

,1− e−qT
}
f(v)dv

=
(
1− e−qT

)( p̃(c)− c
q

)∫ ∞
p̃(c)
q

min

{(
1−

(
p̃(c)

vq

) −q
log(δ)

)(
1− e−qT

)−1
,1

}
f(v)dv

≥
(
1− e−qT

)( p̃(c)− c
q

)∫ ∞
p̃(c)
q

(
1−

(
p̃(c)

vq

) −q
log(δ)

)
f(v)dv

=

(
p∗(c)− c

q

(
1− e−qT

))∫ ∞
p∗(c)

1−e−qT

(
1−

(
p∗(c)

v (1− e−qT )

) −q
log(δ)

)
f(v)dv

≥
(
p∗(c)− c

q

(
1− e−qT

))∫ v∗

ṽ

(
1−

(
p∗(c)

v (1− e−qT )

) −q
log(δ)

)
f(v)dv

≥
(
p∗(c)− c

q

(
1− e−qT

))((
1−

(
p∗(c)

ṽ (1− e−qT )

) −q
log(δ)

)
f (v∗) (v∗− ṽ)

)
,

where the first inequality follows from the fact that p̃(c) = p∗(c)

(1−e−qT )
is only a feasible subscription price,

the second equality follows from taking (1− e−qT ) out of the minimum, the second inequality follows

from

(
1−

(
p̃(c)

vq

) −q
log(δ)

)
≤
(

1−
(
p̃(c)

vq

) −q
log(δ)

)
(1− e−qT )

−1
, the third inequality follows from f(v) ≤ f(v)
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and

(
1−

(
p∗(c)

v(1−e−qT )

) −q
log(δ)

)
f(v) ≥ 0, the fourth inequality follows since f(x) is non-increasing and 1 −(

p∗(c)

v(1−e−qT )

) −q
log(δ)

is increasing in v. Therefore,

RSP (c,F )

RCP (c,F )
≥

((
1−

(
p∗(c)

ṽ (1− e−qT )

) −q
log(δ)

)
(v∗− ṽ)

)
f (v∗)

F (v∗)

≥

((
1−

(
p∗(c)

ṽ (1− e−qT )

) −q
log(δ)

)
(v∗− ṽ)

)
f (0)

F (0)
,

the second inequality follows from F is MHR. Note p∗(c)
ṽ

is a constant with respect to q, δ, T , and v∗ − ṽ

tends infinity as p∗(c) tends to infinity. Therefore, the ratio will be larger than 1 when p∗(c) is sufficiently

large, implying RCP (c,F )≤RSP (c,F ) for all c sufficiently large, as desired.

�

B.3. Omitted Proofs of Section 4

Proof of Lemma 3 First, let v be the lowest valuation a user will pay the contract price, we can rewrite

the revenue of the contract pricing as

RCP (c,F ) =

(
vq (1− δT e−qT )

q− log(δ)
− c

q

(
1− e−qT

))
F (v),

The first-order condition for the optimal contract price is then,

∂RCP (c,F )

∂v
=
q (1− δT e−qT )

q− log(δ)
F (v)−

(
vq

q− log(δ)
− c

q

(
1− e−qT

))
f(v) = 0. (EC.9)

By Lemma 2 the optimal contract price is unique in p and thus its unique in v, so let v∗ be the solution of

Eq. (EC.9), and p̃=
(

v∗q2

q−log(δ)

)(
1−δT e−qT
1−e−qT

)
be a feasible subscription price. In the proof for the uniqueness

of optimal subscription price (Lemma 2), we also show that the subscription revenue is unimodal over the

subscription price p. If the first order derivative of subscription revenue is larger than 0 at p̃, by gradient

method, the optimal subscription price should be higher than p̃, then we have the price dominance.

Now, by Eq. (3) the revenue of optimal subscription pricing is,

RSP (c,F ) = max
p

(
p− c
q

)∫ ∞
p
q

min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}
f(v)dv.

For the case 1−
(
p

vq

) −q
log(δ) ≤ 1− e−qT , then min

{
1−

(
p

vq

) −q
log(δ)

,1− e−qT
}

= 1−
(
p

vq

) −q
log(δ)

, and the first

order derivative of Eq. (3) at p̃ is

∂RSP (c,F )

∂p
|p̃ =

1

q

∫ ∞
p̃q−1

[(
1−

(
p̃

vq

) −q
log(δ)

)
+

q

log(δ)

(
p̃− c
p̃

)(
p̃

vq

) −q
log(δ)

]
f(v)dv

≥ 1

q

∫ ∞
p̃q−1

[
1−

(
1− q

log(δ)

)(
p̃

vq

) −q
log(δ)

]
f(v)dv

≥ 1

q

[
1−

(
1− q

log(δ)

)(
p̃

v∗q

) −q
log(δ)

]
F (v∗)
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=
1

q

[
1−

(
1− q

log(δ)

)((
q

q− log(δ)

)(
1− δT e−qT

1− e−qT

)) −q
log(δ)

]
F (v∗)

≥ 1

q

1−
(

1− q

log(δ)

)((
1− q

log(δ)

) log(δ)
q

) −q
log(δ)

F (v∗)

≥ 0,

the first inequality is induced by p̃−c
p̃
≤ 1 when c ≥ 0, the second inequality follows from the fact that[

1−
(

1− q

log(δ)

)(
p̃

vq

) −q
log(δ)

]
is increasing in v and the generalized Markov’s inequality, the second equal-

ity follows from plugging in the subscription price is p̃, the third inequality is derived from (C1), namely(
1− q

log(δ)

) log(δ)
q ≥

(
q

q−log(δ)

)(
1−δte−qt
1−e−qt

)
, by simplifying we obtain the final inequality.

For the opposite case 1 −
(
p

vq

) −q
log(δ) ≥ 1 − e−qT , and let ṽ = p̃

q
=
(

v∗q
q−log(δ)

)(
1−δT e−qT
1−e−qT

)
, the first order

derivative of Eq. (3) at p̃ is

∂RSP (c,F )

∂p
|p̃ =

(
1− e−qT

q

)(
F

(
p̃

q

)
−
(
p̃− c
q

)
f

(
p̃

q

))
=

(
1− e−qT

q

)(
F (ṽ)−

((
v∗q

q− log(δ)

)(
1− δT e−qT

1− e−qT

)
− c

q

)
f (ṽ)

)
= f(ṽ)

(
1− e−qT

q

)(
F (ṽ)

f (ṽ)
−
(

q

q− log(δ)

)(
1− δT e−qT

1− e−qT

)(
F (v∗)

f(v∗)

))
≥ 0.

where the second equality follows from plugging p̃, the third follows from Eq. (EC.9), the inequality follows

from the fact that F (x)

f(x)
is non-increasing, ṽ≤ v∗, and

(
q

q−log(δ)

)(
1−δT e−qT
1−e−qT

)
≤ 1.

Thus in both cases, the first order derivative of the subscription revenue at p̃=
(

v∗q2

q−log(δ)

)(
1−δT e−qT
1−e−qT

)
is

larger than 0. Thus the optimal subscription price should be higher than p̃=
(

v∗q2

q−log(δ)

)(
1−δT e−qT
1−e−qT

)
, which is

in turn higher than the optimal contract price
(

v∗q
q−log(δ)

)
(1− δT e−qT ). Hence, we show the price dominance

arg max
p

RSP (p, c,F )≥
(

q

1− e−qT

)
arg max

p

RCP (p, c,F ).

when (C1) holds.

�

B.4. Omitted Proofs from Section 4.2

Proof of Theorem 4. We’ll prove each part separately.

Part a) First, we show the result for two matching rates {q1, q2} with population sizes {t1, t2}. The

revenue of (CP) with contract price p is,

RCP (c,F ) = (p− cE[Time on platform|(CP)])F

((
q− log(δ)

q− qδT e−qT

)
p

)
.

For any price p, the proportion of users which will pay the price depends only on the user supposed match

rate q and is thus independent of the order in which candidate matches are shown. Thus, to compare the

revenue of the two possible orderings, {q2, q1} and {q1, q2}, we only need to compare the expected matching
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cost to the platform from each user, or equivalently, the expected time on the platform. Recall XC(q) was the

expected time on the platform for a user who paid the contract price. When the platform chooses matching

order {q1, q2}, the expected time on the platform for a user who paid the contract price is,

XC({q1, q2}) = E[Time on platform|(CP)]

=

∫ t1

0

tq1e
−tq1dt+ e−t1q1

∫ t2

0

(t+ t1) q2e
−tq2dt+Te−(t1q1+t2q2)

=

∫ t1

0

tq1e
−tq1dt+ e−t1q1

(∫ t2

0

tq2e
−tq2dt+ t1 (1− e−q2t2)

)
+Te−(t1q1+t2q2).

Similarly, when the matching order is {q2, q1}, the expected time on the platform for a user who paid the

contract price is

XC({q2, q1}) = E[Time on platform|(CP)]

=

∫ t2

0

tq2e
−tq2dt+ e−t2q2

∫ t1

0

(t+ t2) q1e
−tq1dt+Te−(t1q1+t2q2)

=

∫ t2

0

tq2e
−tq2dt+ e−t2q2

(∫ t1

0

tq1e
−tq1dt+ t2 (1− e−t2q2)

)
+Te−(t1q1+t1q1).

Then,

XC({q1, q2})−XC({q2, q1})

= (1− e−t2q2)

(∫ t1

0

tq1e
−tq1dt+ t1e

−t1q1

)
− (1− e−t1q1)

(∫ t2

0

tq2e
−tq2dt+ t2e

−t2q2

)
,

=
(1− e−t1q1) (1− e−t2q2)

q1
− (1− e−t1q1) (1− e−t2q2)

q2
≥ 0,

where the final inequality follows from q2 ≥ q1. Therefore, we conclude for any distribution F ,

RCP (c,F,{q2, q1})≥RCP (c,F,{q1, q2}).

Now, for k matching rates {q1, . . . , qk}, with associated populations {t1, . . . , tk} let Ti =
∑i

j=1 tj , for i =

1, . . . k, and T0 = 0. The expected time on the platform for a user who paid the contract price is

XC({q1, . . . , qk}) =

k∑
i=1

(∫ ti

0

(t+Ti−1)e−qi(t+Ti−1)dt

)
+Te−qT .

If we swap qj and qj+1 in {q1, . . . , qk} where 1≤ j ≤ k− 1, the expected time on the platform for a user who

paid the contract price becomes

XC({q1, . . . qj+1, qj , . . . , qk}) = Te−qT +

j−1∑
i=1

(∫ ti

0

(t+Ti−1)e−qi(t+Ti−1)dt

)
+

∫ tj+1

0

(t+Tj−1)e−qj+(t+Tj−1)dt

+

∫ tj

0

(t+Tj−1 + tj+1)e−qj+1(t+Tj−1+tj+1)dt+

k∑
i=j+2

(∫ ti

0

(t+Ti−1)e−qi(t+Ti−1)dt

)
Note all the other parts for the integrations won’t change if we only swap two matching rates next to each

other. Therefore, we can generalize the proof for order {q1, . . . , qk} by switching any two reverse orders that

are next to each other. �
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Part b) As in part a), we first show the result for two matching rates {q1, q2} with population sizes

{t1, t2}. The revenue of (SP) with subscription price p is,

RSP (c,F ) =

∫ ∞
p
q

(p− c)×E [Time on platform|(SP)]f(v)dv.

The revenue comparison RSP (c,F,{t1, ..., tk}),{q1, ..., qK}) ≤ RSP (c,F,σ ({t1, ..., tk})), σ ({q1, ..., qk})) will

follow if we can show that for each user, the expected time on the platform will be longer for {q1, ..., qK}.
Therefore, we only need to show that for price p and fixed user valuation v, the expected time the user will

stay on platform satisfies

XS (v, p,{q1, q2})≥XS (v, p,{q2, q1}) .

If T is binding, the expected time on platform will be the same as contract model, therefore the conclusion

is the same. Otherwise, let τ = log(p/vq)

log(δ)
, when τ ≤min{t1, t2},

XS (v, p,{q1, q2}) =

∫ τ

0

e−tq1dt,

XS (v, p,{q2, q1}) =

∫ τ

0

e−tq2dt.

Note that e−tq1 ≥ e−tq2 , therefore,

XS(v, p,{q1, q2})≥XS(v, p,{q2, q1}).

When t1 ≤ τ ≤ t2

XS(v, p,{q1, q2}) =

∫ t1

0

e−tq1dt+ e−qt1
∫ τ−t1

0

e−tq2dt,

XS(v, p,{q2, q1}) =

∫ t1

0

e−tq2dt+ e−qt2
∫ τ−t1

0

e−tq2dt.

Similarly, we can show that

XS(v, p,{q1, q2})≥XS(v, p,{q2, q1})

for t2 ≤ τ ≤ t2 or max{t1, t2} ≤ τ ≤ t1 + t2. Therefore, we can conclude that for any distribution F ,

RSP (c,F,{q2, q1})≤RSP (c,F,{q1, q2}).
For matching order {q1, . . . , qk}, let Ti =

∑i

j=1 tj , for i= 1, . . . k, and T0 = 0. If T is binding, the expected

time on the platform for a user whose valuation is v under the subscription price p is

XS(v, p,{q1, . . . , qk}) =

k∑
i=1

(∫ ti

0

(t+Ti−1)e−qi(t+Ti−1)dt

)
+Te−qT ,

and we can apply the proof in part a). Otherwise, let qk′ be the k′-th matching rate such that Tk′ ≤ τ ≤ Tk′+1,

the expected time on the platform for a user whose valuation is v under the subscription price p is

XS(v, p,{q1, . . . , qk}) =

k′∑
i=1

(∫ ti

0

(t+Ti−1)eqi(t+Ti−1)dt

)
+

∫ τ−Tk′

0

(t+Tk′)e
qi(t+Tk′)dt+ τe

−
(∑k′

i=1 qiti+qk′+1(τ−Tk′)
)
.

If we swap matching rates qj and qj+1 where j < k′, it will be the same as T is binding, if we swap matching

rates qj and qj+1 where j ≥ k′+ 1, it will cause no difference for user’s the expected time on the platform, if

we swap qk′ and qk′+1, the expected before k′ will stay as
∑k′−1

i=1

(∫ ti
0

(t+Ti−1)eqi(t+Ti−1)dt
)

, we only need

to consider the difference in qk′ and qk′+1, which is analyzed above. Therefore, we can generalize the proof

for order {q1, ..., qk} by switching any two reverse orders that next to each other. �
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Part c) As in part (a), let XC({q}) be the expected time a user who pays the contract price will spend

on the platform when the match rate is q, and let XC({qk, . . . , q1}) be the expected time a user who pays

the contract price will spend on the platform when the matching rate order is {qk, . . . , q1}. First we will

show XC({qk, . . . , q1})≤XC({q}), i.e., compared with uniform matching rate q, users will leave the platform

sooner when match rates are in descending order. To this end, the revenue of contract pricing is

RCP (p, c,F,{tk, . . . , t1},{qk, . . . , q1}) = (p− cXC({qk, . . . , q1}))F
(

q− log(δ)

q (1− δT e−qT )
p

)
.

Let p∗ be the optimal contract price when the match rate is q, i.e. p∗ such that,

∂RCP (p, c,F,{T},{q})
∂p

|p∗ = F

(
q− log(δ)

q (1− δT e−qT )
p∗
)
−
(

q− log(δ)

q (1− δT e−qT )

)
(p∗− cXC({q}))f

(
q− log(δ)

q (1− δT e−qT )
p∗
)

= 0.

Let v∗ = q−log(δ)
q(1−δT e−qT )

p∗, then, the first order derivative of RCP (c,F,{tk, . . . , t1},{qk, . . . , q1}) at p∗ is

∂RCP (c,F,{tk, . . . , t1},{qk, . . . , q1})
∂p

|p∗

= F (v∗)−
(

q− log(δ)

q (1− δT e−qT )

)
(p∗− cXC({qk, . . . , q1}))f (v∗)

=
∂RCP (p, c,F,{T},{q})

∂p
|p∗ + c

(
q− log(δ)

q (1− δT e−qT )

)
(XC({q})−XC({qk, . . . , q1})f(v∗)

= c

(
q− log(δ)

q (1− δT e−qT )

)
(XC({q})−XC({qk, . . . , q1}))f(v∗)≥ 0,

where the second equality follows from minus XC({q}), then add XC({q}) back, the third equality follows

from ∂RCP (p,c,F,{T},{q})
∂p

|p∗ = 0, the inequality follows from XC({qk, . . . , q1})≤XC({q}). Thus to maximize the

revenue, the optimal contract price for RCP (c,F,{tk, . . . , t1},{qk, . . . , q1}) should be higher than p∗. �
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